Advertisement

Analog Integrated Circuits and Signal Processing

, Volume 101, Issue 3, pp 379–399 | Cite as

Reversals of period doubling, coexisting multiple attractors, and offset boosting in a novel memristive diode bridge-based hyperjerk circuit

  • Jacques KengneEmail author
  • Gervais Dolvis Leutcho
  • Adélaïde Nicole Kengnou Telem
Article

Abstract

In this paper, a new memristive diode bridge-based RC hyperjerk circuit is proposed. This new memristive hyperjerk oscillator (MHO) is obtained from the autonomous 4-D hyperjerk circuit (Leutcho et al. in Chaos Solitons Fractals 107:67–87, 2018) by replacing the nonlinear component (formed by two antiparallel diodes) with a first order memristive diode bridge. The circuit is described by a fifth-order continuous time autonomous (‘elegant’) hyperjerk system with smooth nonlinearities. The dynamics of the system is investigated in terms of equilibrium points and stability, phase portraits, bifurcation diagrams and two-parameter Lyapunov exponents diagrams. The numerical analysis of the model reveals interesting behaviors such as period-doubling, chaos, offset boosting, symmetry recovering crisis, antimonotonicity (i.e. concurrent creation and destruction of periodic orbits) and several coexisting bifurcations as well. One of the most attractive features of the new MHO considered in this work is the presence of several coexisting attractors (e.g. coexistence of two, three, four, five, six, seven, or nine attractors) for some suitable sets of system parameters, depending on the choice of initial conditions. Accordingly, the distribution of initial conditions related to each coexisting attractor is computed to highlight different basins of attraction. Laboratory experimental measurements are carried out to verify the theoretical analysis.

Keywords

Memristive hyperjerk oscillator (MHO) Reversals of period doubling Multistability Offset boosting Experimental study 

Notes

Acknowledgements

The authors would like to thank both the editor and the reviewers for their comments and suggestions that helped to greatly improve the presentation of the present manuscript.

References

  1. 1.
    Chua, L. O. (1971). Memristor-The missing circuit element. IEEE Transactions on Circuit Theory,Ct-18(5), 507–519.CrossRefGoogle Scholar
  2. 2.
    Strukov, D. B., Snider, G. S., Stewart, G. R., & Williams, R. S. (2008). The missing memristor found. Nature,453, 80–83.CrossRefGoogle Scholar
  3. 3.
    Adhikari, S. P., Sah, M. P., Kim, H., & Chua, L. O. (2013). Three fingerprints of memristor. IEEE Transactions on Circuit Systems I,60(11), 3008–3021.CrossRefGoogle Scholar
  4. 4.
    Buscarino, A., Fortuna, L., Frasca, M., & Gambuzza, L. V. (2012). A chaotic circuit based on Hewlett–Packard memristor. Chaos,22, 023136.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bao, B., Zhong, L., & Jian-Ping, X. (2010). Transient chaos in smooth memristor oscillator. Chinese Physics B,19(3), 030510.CrossRefGoogle Scholar
  6. 6.
    Buscarino, A., Fortuna, L., Frasca, M., & Gambuzza, L. V. (2013). A gallery of chaotic oscillators based on HP memristor. International Journal of Bifurcation and Chaos,23(5), 1330015.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Budhathoki, R. K., Sah, M. P. D., Yang, C., Kim, H., & Chua, L. O. (2014). Transient behavior of multiple memristor circuits based on flux charge relationship. International Journal of Bifurcation and Chaos,24(2), 1430006.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bao, B., Zou, X., Liu, Z., & Hu, F. (2013). Generalized memory element and chaotic memory system. International Journal of Bifurcation and Chaos,23(8), 1350135.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Muthuswamy, B., & Chua, L. O. (2010). Simplest chaotic circuit. International Journal of Bifurcation and Chaos,20(5), 1567–1580.CrossRefGoogle Scholar
  10. 10.
    Wang, G. Y., He, J. L., Yuan, F., & Peng, C. J. (2013). Dynamical behaviour of a TiO2 memristor oscillator. Chinese Physics Letters,30, 110506.CrossRefGoogle Scholar
  11. 11.
    Itoh, M., & Chua, L. O. (2008). Memristor oscillators. International Journal of Bifurcation and Chaos,18, 3183–3206.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Muthuswamy, B. (2010). Implementing memristor based chaotic circuits. International Journal of Bifurcation and Chaos,20, 1335–1350.zbMATHCrossRefGoogle Scholar
  13. 13.
    Bao, B., Xu, J. P., Zhou, G. H., Ma, Z. H., & Zou, L. (2011). Chaotic memristive circuit: Equivalent circuit realization and dynamical analysis. Chinese Physics B,20, 120502.CrossRefGoogle Scholar
  14. 14.
    Bao, B., Yu, J., Hu, F., & Liu, Z. (2014). Generalized memristor consisting of diode bridge with first order parallel RC filter. International Journal of Bifurcation and Chaos,24(11), 1450143.zbMATHCrossRefGoogle Scholar
  15. 15.
    Chen, M., Li, M., Yu, Q., Bao, B., Xu, Q., & Wang, J. (2015). Dynamics of self-excited and hidden attractors in generalized memristor-based Chua’s circuit. Nonlinear Dynamics,81, 215–226.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Chen, M., Yu, J., Yu, Q., Li, C., & Bao, B. (2014). A memristive diode bridge-based canonical Chua’s circuit. Entropy,16, 6464–6476.CrossRefGoogle Scholar
  17. 17.
    Pisarchik, A. N., & Feudel, U. (2014). Control of multistability. Physics Reports,540(4), 167–218.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Masoller, C. (1994). Coexistence of attractors in a laser diode with optical feedback from a large external cavity. Physical Review A,50, 2569–2578.CrossRefGoogle Scholar
  19. 19.
    Cushing, J. M., Henson, S. M., & Blackburn, C. C. (2007). Multiple mixed attractors in a competition model. Journal of Biological Dynamics,1, 347–362.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Upadhyay, R. K. (2003). Multiple attractors and crisis route to chaos in a model of food-chain. Chaos, Solitons & Fractals,16, 737–747.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Massoudi, A., Mahjani, M. G., & Jafarian, M. (2010). Multiple attractors in Koper–Gaspard model of electrochemical. Journal of Electroanalytical Chemistry,647, 74–86.CrossRefGoogle Scholar
  22. 22.
    Li, C., & Sprott, J. C. (2014). Coexisting hidden attractors in a 4-D simplified Lorenz system. International Journal of Bifurcation and Chaos,24, 1450034.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Leipnik, R. B., & Newton, T. A. (1981). Double strange attractors in rigid body motion with linear feedback control. Physics Letters A,86, 63–87.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Guan, Z. H., Lai, Q., Chi, M., Chen, X. M., & Liu, F. (2014). A new three-dimensional system with multiple chaotic attractors. Nonlinear Dynamics,75, 331–343.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Lai, Q., & Chen, S. (2016). Generating multiple chaotic attractors from Sprott B system. International Journal of Bifurcation and Chaos,26(11), 1650177.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Lai, Q., & Chen, S. (2016). Coexisting attractors generated from a new 4D smooth chaotic system. International Journal on Control, Automation and Systems,14(4), 1124–1131.CrossRefGoogle Scholar
  27. 27.
    Kengne, J., Njitacke, Z. T., & Fotsin, H. B. (2016). Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dynamics,83, 751–765.MathSciNetCrossRefGoogle Scholar
  28. 28.
    VaithianathanVandVeijun, J. (1998). Coexistence of four different attractors in a fundamental power system model. IEEE Transactions on Circuits Systems-I,46, 405–409.Google Scholar
  29. 29.
    Kengne, J., NguomkamNegou, A., & Tchiotsop, D. (2017). Antimonotonicity, chaos and multiple attractors in a novel autonomous memristor-based jerk circuit. Nonlinear Dynamics,88, 2589–2608.CrossRefGoogle Scholar
  30. 30.
    Kuznetsov, A. P., Kuznetsov, S. P., Mosekilde, E., & Stankevich, N. V. (2015). Co-existing hidden attractors in a radio-physical oscillator. Journal of Physics A: Mathematical and Theoretical,48, 125101.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Kengne, J., Njitacke, Z. T., NguomkamNegou, A., FouodjiTsotsop, M., & Fotsin, H. B. (2015). Coexistence of multiple attractors and crisis route to chaos in a novel chaotic jerk circuit. International Journal of Bifurcation and Chaos,25(4), 1550052.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Njitacke, Z. T., Kengne, J., Fotsin, H. B., Nguomkam Negou, A., & Tchiotsop, D. (2016). Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bidge-based Jerk circuit. Chaos, Solitons & Fractals,91, 180–197.zbMATHCrossRefGoogle Scholar
  33. 33.
    Kengne, J., Folifack Signing, V. R., Chedjou, J. C., & Leutcho, G. D. (2017). Nonlinear behavior of a novel chaotic jerk system: antimonotonicity, crises, and multiple coexisting attractors. International Journal of Dynamics and Control.  https://doi.org/10.1007/s40435-017-0318-6.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Bao, B., Jiang, T., Xu, Q., Chen, M., Wu, H., & Hu, Y. (2017). Coexisting infinitely many attractors in active band-pass filter-based memristive circuit. Nonlinear Dynamics,86(3), 1711–1723.CrossRefGoogle Scholar
  35. 35.
    Li, C., Hu, W., Sprott, J. C., & Wang, X. (2015). Multistability in symmetric chaotic systems. The European Physical Journal Special Topics,224, 1493–1506.CrossRefGoogle Scholar
  36. 36.
    Xu, Q., Lin, Y., Bao, B., & Chen, M. (2016). Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit. Chaos, Solitons & Fractals,83, 186–200.MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Maggio, G. M., DeFeo, O., & Kennedy, M. P. (1999). Nonlinear analysis of the Colpitts oscillator and application to design. IEEE Transactions on Circuits and Systems I Fundamental Theory and Applications,46, 1118–1130.zbMATHCrossRefGoogle Scholar
  38. 38.
    Leutcho, G. D., Kengne, J., & Kamdjeu Kengne, L. (2018). Dynamical analysis of a novel autonomous 4-D hyperjerk circuit with hyperbolic sine nonlinearity: Chaos, antimonotonicity and a plethora of coexisting attractors. Chaos, Solitons & Fractals,107, 67–87.MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Klouverakis, K. E., & Sprott, J. C. (2006). Chaotic hyperjerk systems. Chaos, Solitons & Fractals,28, 739–746.MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Linz, S. J. (2008). On hyperjerk systems. Chaos, Solitons & Fractals,37, 741–747.MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Zeraoulia, E., & Sprott, J. C. (2013). Transformation of 4-D dynamical systems to hyperjerk form. Palestine Journal of Mathematics,2, 38–45.MathSciNetzbMATHGoogle Scholar
  42. 42.
    Munmuangsaen, B., & Srisuchinwong, B. (2011). Elemetary chaotic snap flows. Chaos, Solitons & Fractals,44, 995–1003.CrossRefGoogle Scholar
  43. 43.
    Dalkiran, F. Y., & Sprott, J. C. (2016). Simple chaotic hyperjerk systems. International Journal of Bifurcation and Chaos,26(11), 1550052.MathSciNetCrossRefGoogle Scholar
  44. 44.
    Wang, X., Vaidyanathan, S., Volos, C., Pham, V.-T., & Kapitaniak, T. (2017). Dynamics, circuit realization, control and synchronization of a hyperchaotic hyperjerk system with coexisting attractors. Nonlinear Dynamics.  https://doi.org/10.1007/s11071-017-3542-x.MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Sundarapandian, V., Volos, C., Pham, V.-T., & Madhavan, K. (2015). Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation. Archives of Control Sciences,25, 135–158.MathSciNetCrossRefGoogle Scholar
  46. 46.
    Daltzis, P., Vaidyanathan, S., & Pham, V. (2017). Hyperchaotic attractor in a novel hyperjerk system with two nonlinearities. Circuits Systems Signal Processing.  https://doi.org/10.1007/s00034-017-0581-y.MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Fautso Kuiate, G., Karthikeyan, R., Kingni, S. T., Kamdoum Tamba, V., & Jafari, S. (2017). Autonomous Van der Pol-Duffing snap oscillator: analysis, synchronization and application to real-time image encryption. International Journal of Dynamics Control.  https://doi.org/10.1007/s40435-017-0373-z.MathSciNetCrossRefGoogle Scholar
  48. 48.
    Jafari, S., Ahmadi, A., Panahi, S., & Rajagopal, K. (2018). Extreme multi-stability: When imperfection changes quality. Chaos, Solitons & Fractals,108, 182–186.CrossRefGoogle Scholar
  49. 49.
    Jafari, S., Sprott, J. C., & Nazarimehr, F. (2015). Recent new examples of hidden attractors. European Physical Journal Special Topics,224, 1469–1476.CrossRefGoogle Scholar
  50. 50.
    Jafari, S., Pham, V. T., & Kapitaniak, T. (2016). Multiscroll chaotic sea obtained from a simple 3D system without equilibrium. International Journal of Bifurcation Chaos,26, 1650031.MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Jafari, S., Sprott, J. C., & Molaie, M. (2016). A simple chaotic flow with a plane of equilibria. International Journal of Bifurcation Chaos,26, 1650098.MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Jafari, S., Sprott, J. C., Pham, V. T., Volos, K., & Li, C. (2016). Simple chaotic 3D flows with surfaces of equilibria. Nonlinear Dynamics,86, 1349–1358.CrossRefGoogle Scholar
  53. 53.
    Leutcho, G. D., & Kengne, J. (2018). A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors. Chaos, Solitons & Fractals,113, 275–293.MathSciNetCrossRefGoogle Scholar
  54. 54.
    Leutcho, G. D., Kengne, J., & Kengne, R. (2018). Remerging Feigenbaum trees, and multiple coexisting bifurcations in a novel hybrid diode-based hyperjerk circuit with offset boosting. International Journal of Dynamic Control.  https://doi.org/10.1007/s40435-018-0438-7.CrossRefGoogle Scholar
  55. 55.
    Strogatz, S. H. (1994). Nonlinear dynamics and chaos. Reading: Addison-Wesley.Google Scholar
  56. 56.
    Argyris, J., Faust, G., & Haase, M. (1994). An exploration of chaos. Amsterdam: North-Holland.zbMATHGoogle Scholar
  57. 57.
    Nayfeh, A. H., & Balachandran, B. (1995). Applied nonlinear dynamics: Analytical, computational and experimental methods. New York: Wiley.zbMATHCrossRefGoogle Scholar
  58. 58.
    Leonov, G. A., Kuznetsov, N. V., & Mokaev, T. N. (2015). Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. European Physical Journal Special Topics,224, 1421–1458.CrossRefGoogle Scholar
  59. 59.
    Li, C., Wang, X., & Chen, G. (2017). Diagnosing multistability by offset boosting. Nonlinear Dynamics. 017-3729-1.Google Scholar
  60. 60.
    Li, C., Sprott, J. C., Akgul, A., Lu Herbert, H. C., & Zhao, Y. (2017). A new chaotic oscillator with free control. Chaos,27, 083101.MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Pham, V.-T., Wang, X., Jafari, S., Volos, K., & Kapitaniak, T. (2017). From Wang-Chen system with only one stable equilibrium to a new chaotic system without equilibrium. International Journal of Bifurcation and Chaos,27, 1750097.MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Pham, V. T., Volos, C., Kingni, S. T., Jafari, S., & Kapitaniak T. Coexistence of hidden chaotic attractors in a novelno-equilibrium system. Nonlinear Dyn.2016; 3170-x.Google Scholar
  63. 63.
    Nguomkam Negou, A., & Kengne, J. (2018). Dynamic analysis of a unique Jerk system with a smoothly adjustable symmetry and nonlinearity: Reversals of period doubling, offset boosting and coexisting bifurcations. International Journal of Electronics and Communications.  https://doi.org/10.1016/j.aeue.2018.04.003.CrossRefGoogle Scholar
  64. 64.
    Li, C., Sprott, J. C., Mei, Y. (2017). An infinite 2-D lattice of strange attractors. Nonlinear Dynamics. 017-3612-0.Google Scholar
  65. 65.
    Li, C., & Sprott, J. C. (2016). Variable-boostable chaotic flows. Optik,127, 10389–10398.CrossRefGoogle Scholar
  66. 66.
    Li, C., Sprott, J. C., Hu, W., & Xu, Y. (2017). Infinite multistability in a self-reproducing Chaotic System. International Journal of Bifurcation and Chaos,27, 1750160.MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Li, C., Sprott, J. C., Kapitaniak, T., & Lu, T. (2018). Infinite lattice of hyperchaotic strange attractors. Chaos, Solitons & Fractals,109, 76–82.MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Li, C., & Sprott, J. C. (2018). An infinite 3-D quasiperiodic lattice of chaotic attractors. Physics Letters A,382, 581–587.MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Stegemann, C., Albuquerque, H. A., Rubinger, R. M., & Rech, P. C. (2011). Lyapunov exponent diagrams of a 4 dimensional chua system. Chaos: An Interdisciplinary Journal of Nonlinear Science, 21(3):033105.Google Scholar
  70. 70.
    Rech, P. C. (2017). Hyperchaos and quasiperiodicity from a four-dimensional system based on the lorenz system. European Physics Journal B,90(12), 251.MathSciNetCrossRefGoogle Scholar
  71. 71.
    FozinFonzin, T., Srinivasan, K., Kengne, J., & Pelap, F. B. (2018). Coexisting bifurcations in a memristive hyperchaotic oscillator. International Journal of Electronics and Communications (AEÜ),90, 110–112.CrossRefGoogle Scholar
  72. 72.
    Kengne, R., Tchitnga, R., Mabekou, S., WafoTakam, B. R., Soh, G. B., & Fomethe, A. (2018). On the relay coupling of three fractional-order oscillations with time-delay consideration: Global and cluster synchronizations. Chaos, Solitons & Fractals,111, 6–17.MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Alombah, H. N., Fotsin, H., & Kengne, R. (2017). Coexistence of Multiple attractors, metastable chaos and bursting oscillations in a multiscroll memristive chaotic circuit. Int. J. of Bifurcation and Chaos,27, 1750067.MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Dawson, S. P., Grebogi, C., Yorke, J. A., Kan, I., & Koçak, H. (1992). Antimonotonicity: inevitable reversals of period-doubling cascades. Physics Letters A,162, 249–254.MathSciNetCrossRefGoogle Scholar
  75. 75.
    Parlitz, U., & Lauterborn, W. (1985). Superstructure in the bifurcation set of the Duffing equation ẍ + dẋ + x + x3 = f cos (ωt). Physics Letters A,107, 351–355.MathSciNetCrossRefGoogle Scholar
  76. 76.
    Kocarev, L., Halle, K., Eckert, K., & Chua, L. (1993). Experimental observation of antimonotonicity in Chua’s circuit. International Journal of Bifurcation and Chaos,3, 1051–1055.zbMATHCrossRefGoogle Scholar
  77. 77.
    Ogawa, T. (1988). Quasiperiodic instability and chaos in the bad-cavity laser with modulated inversion: Numerical analysis of a Toda oscillator system. Physical Review A,37, 4286.MathSciNetCrossRefGoogle Scholar
  78. 78.
    Manimehan, I., & Philominathan, P. (2012). Composite dynamical behaviors in a simple series–parallel LC circuit. Chaos, Solitons & Fractals,45, 1501–1509.CrossRefGoogle Scholar
  79. 79.
    Kyprianidis, I., Stouboulos, I., Haralabidis, P., & Bountis, T. (2000). Antimonotonicity and chaotic dynamics in a fourth-order autonomous nonlinear electric circuit. International Journal of Bifurcation and Chaos,10, 1903–1915.CrossRefGoogle Scholar
  80. 80.
    Bier, M., & Bountis, T. C. (1984). Remerging Feigenbaum trees in dynamical systems. Physics Letters A,104, 239–244.MathSciNetCrossRefGoogle Scholar
  81. 81.
    Akgul, A., Moroz, I., Pehlivan, I., & Vaidyanathan, V. (2016). A new four-scroll chaotic attractor and its engineering applications. Optik,127(13), 5491–5499.CrossRefGoogle Scholar
  82. 82.
    Volos, C., Akgul, A., Pham, V. T., Stouboulos, I., & Kyprianidis, I. (2017). A simple chaotic circuit with a hyperbolic sine function and its use in a sound encryption scheme. Nonlinear Dynamics,89, 1047–1061.CrossRefGoogle Scholar
  83. 83.
    Elwakil, A. S., & Ozoguz, S. (2003). Chaos in a pulse-excited resonator with self feedback. Electronics Letters,39, 831–833.CrossRefGoogle Scholar
  84. 84.
    Akif, A., Shafqat, H., & Ihsan, P. (2016). A new three-dimensional chaotic system, its dynamical analysis and electronic circuit applications. Optik -International Journal for Light and Electron Optics,127, 7062–7071.CrossRefGoogle Scholar
  85. 85.
    Vaidyanathan, S., Akgul, A., Kaçar, S., & Çavusoglu, U. (2018). A new 4-D chaotic hyperjerk system, its synchronization, circuit design and applications in RNG, image encryption and chaos-based steganography. European Physical Journal Plus,133, 46.CrossRefGoogle Scholar
  86. 86.
    Ren, S., Panahi, S., Rajagopal, K., Akgul, A., Pham, V.-T., & Jafari, S. (2018). A new chaotic flow with hidden attractor: The first hyperjerk system with no equilibrium. Zeitschrift für Naturforschung. http://doi.org/10.1515/zna-2017-0409.CrossRefGoogle Scholar
  87. 87.
    Akif, A., Li, C., & Pehlivan, I. (2017). Amplitude control analysis of a four-wing chaotic attractor, its electronic circuit designs and microcontroller-based random number generator. Journal of Circuits Systems and Computers,26, 1750190.CrossRefGoogle Scholar
  88. 88.
    Pham, V.-T., Akgul, A., Volos, C., Jafari, S., & Kapitaniake, T. (2017). Dynamics and circuit realization of a no-equilibrium chaotic system with a boostable variable. International Journal of Electronics and Communications.  https://doi.org/10.1016/j.aeue.2017.05.034.CrossRefGoogle Scholar
  89. 89.
    Sprott, J. C. (2011). A proposed standard for the publication of new chaotic systems. International Journal of Bifurcation and Chaos,21(9), 2391–2394.CrossRefGoogle Scholar
  90. 90.
    Maggio, G. M., De Feo, O., & Kennedy, M. P. (1999). Nonlinear analysis of the Colpitts oscilator and application to design. IEEE Transactions on Circuits and Systems,45, 1118–1130.zbMATHCrossRefGoogle Scholar
  91. 91.
    Sprott, J. C. (2010). Elegant chaos: Algebraically siple flow. Singapore: Wold Scientific.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jacques Kengne
    • 1
    • 2
    Email author
  • Gervais Dolvis Leutcho
    • 1
    • 2
  • Adélaïde Nicole Kengnou Telem
    • 1
    • 2
  1. 1.Research Unit of Laboratory of Automation and Applied Computer (LAIA), Electrical Engineering Department of IUT-FVUniversity of DschangBandjounCameroon
  2. 2.Research Unit of Laboratory of Condensed Matter, Electronics and Signal Processing (URMACETS), Department of Physics, Faculty of SciencesUniversity of DschangDschangCameroon

Personalised recommendations