Analog Integrated Circuits and Signal Processing

, Volume 101, Issue 3, pp 623–640 | Cite as

Effect of jitter on the settling time of mesochronous clock retiming circuits

  • Naveen KadayintiEmail author
  • Amitalok J. Budkuley
  • Maryam S. Baghini
  • Dinesh K. Sharma


It is well known that timing jitter can degrade the bit error rate of receivers that recover the clock from input data. However, timing jitter can also result in an indefinite increase in the settling time of clock recovery circuits, particularly in low swing mesochronous systems. Mesochronous clock retiming circuits are required in repeaterless low swing on-chip interconnects. We first discuss how timing jitter can result in a large increase in the settling time of the clock recovery circuit. Next, the circuit is modelled as a Markov chain with absorbing states. The mean time to absorption of the Markov chain, which represents the mean settling time of the circuit, is determined. The model is validated through behavioural simulations of the circuit, the results of which match well with the model predictions. We consider circuits with (1) data dependent jitter, (2) random jitter, and (3) combination of both of them. We show that a mismatch between the strengths of up and down corrections of the retiming can reduce the settling time. In particular, a 10% mismatch can reduce the mean settling time by up to 40%. We leverage this fact toward improving the settling time performance, and propose useful techniques based on biased training sequences and mismatched charge pumps. We also present a coarse+fine clock retiming circuit, which can operate in coarse first mode, to reduce the settling time substantially. These fast settling retiming circuits are verified with circuit simulations.


Settling time Clock recovery Metastability Low swing interconnect Absorbing Markov chains 


  1. 1.
    Razavi, B. (2002). Challenges in the design high-speed clock and data recovery circuits. IEEE Communications Magazine, 40(8), 94–101.CrossRefGoogle Scholar
  2. 2.
    Buckwalter, J. F., & Hajimiri, A. (2006). Analysis and equalization of data-dependent jitter. IEEE Journal of Solid-State Circuits, 41(3), 607–620.CrossRefGoogle Scholar
  3. 3.
    Kadayinti, N., Budkuley, A. J., & Sharma, D. K. (2017). Settling time of mesochronous clock re-timing circuits in the presence of timing jitter. In Proceedings of IEEE international symposium circuits and systems (ISCAS), Baltimore, MD, 2017, pp. 1–4.Google Scholar
  4. 4.
    Lee, S. H., Lee, S. K., Kim, B., Park, H. J., & Sim, J. Y. (2014). Current-mode transceiver for silicon interposer channel. IEEE Journal of Solid-State Circuits, 49(9), 2044–2053.CrossRefGoogle Scholar
  5. 5.
    Kadayinti, N., Baghini, M., & Sharma, D. (2017). A clock retiming circuit for repeaterless low swing on-chip interconnects. In Proceedings of 30th IEEE conference on VLSI design, pp. 15–20.Google Scholar
  6. 6.
    Chung, S. H., Kim, Y. J., Kim, Y. H., & Kim, L. S. (2016). A 10-Gb/s 0.71-pJ/bit forwarded-clock receiver tolerant to high-frequency jitter in 65-nm CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs, 63(3), 264–268.CrossRefGoogle Scholar
  7. 7.
    Hossain, M., & Carusone, A. C. (2011). 7.4 Gb/s 6.8 mW source synchronous receiver in 65 nm CMOS. IEEE Journal of Solid-State Circuits, 46(6), 1337–1348.CrossRefGoogle Scholar
  8. 8.
    Kreienkamp, R., Langmann, U., Zimmermann, C., Aoyama, T., & Siedhoff, H. (2005). A 10Gb/s CMOS clock and data recovery circuit with an analog phase interpolator. IEEE Journal of Solid-State Circuits, 40(3), 736–743.CrossRefGoogle Scholar
  9. 9.
    Takauchi, H., Tamura, H., Matsubara, S., Kibune, M., Doi, Y., Chiba, T., et al. (2003). A CMOS multichannel 10 Gb/s transceiver. IEEE Journal of Solid-State Circuits, 38(12), 2094–2100.CrossRefGoogle Scholar
  10. 10.
    Shastri, B. J., & Plant, D. V. (2010). 5/10-Gb/s burst-mode clock and data recovery based on semiblind oversampling for PONs: Theoretical and experimental. IEEE Journal of Selected Topics in Quantum Electronics, 16(5), 1298–1320.CrossRefGoogle Scholar
  11. 11.
    Kishine, K., Inaba, H., Inoue, H., Nakamura, M., Tsuchiya, A., Katsurai, H., et al. (2015). A multi-rate burst-mode CDR using a GVCO with symmetric loops for instantaneous phase locking in 65-nm CMOS. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(5), 1288–1295.CrossRefGoogle Scholar
  12. 12.
    Lee, J., & Liu, M. (2008). A 20-Gb/s burst-mode clock and data recovery circuit using injection-locking technique. IEEE Journal of Solid-State Circuits, 43(3), 619–630.CrossRefGoogle Scholar
  13. 13.
    Hsieh, M., & Sobelman, G. E. (2008). Architectures for multi-gigabit wire-linked clock and data recovery. IEEE Circuits and Systems Magazine, 8(4), 45–57.CrossRefGoogle Scholar
  14. 14.
    Joyner, J. W., Zarkesh-Ha, P., & Meindl, J. D. (2001). A stochastic global net-length distribution for a three-dimensional system-on-a-chip (3D-SoC). In Proceedings of the 14th annual IEEE international ASIC/SOC conferece, pp. 147–151.Google Scholar
  15. 15.
    Zarkesh-Ha, P., Davis, J. A., & Meindl, J. D. (2000). Prediction of net-length distribution for global interconnects in a heterogeneous system-on-a-chip. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 8(6), 649–659.CrossRefGoogle Scholar
  16. 16.
    Mensink, E., Schinkel, D., Klumperink, E., van Tuijl, E., & Nauta, B. (2010). Power efficient gigabit communication over capacitively driven RC-limited on-chip interconnects. IEEE Journal of Solid-State Circuits, 45(2), 447–457.CrossRefGoogle Scholar
  17. 17.
    Kim, B., & Stojanovic, V. (2010). An energy-efficient equalized transceiver for RC-dominant channels. IEEE Journal of Solid-State Circuits, 45(6), 1186–1197.CrossRefGoogle Scholar
  18. 18.
    Lamport, L. (2012). Buridan’s principle. Foundations of Physics, 42(8), 1056–1066.CrossRefGoogle Scholar
  19. 19.
    Chaney, T. J., & Molnar, C. E. (1973). Anomalous behavior of synchronizer and arbiter circuits. IEEE Transactions on Computers, C–22(4), 421–422.CrossRefGoogle Scholar
  20. 20.
    Alexander, J. (1975). Clock recovery from random binary signals. Electronics Letters, 11(22), 541–542.CrossRefGoogle Scholar
  21. 21.
    Hogge, C. R. (1985). A self correcting clock recovery circuit. IEEE Transactions on Electron Devices, 32(12), 2704–2706.CrossRefGoogle Scholar
  22. 22.
    Keysight Technologies, TG1B1-A .(accessed 2016).
  23. 23.
    Keysight Technologies, TG1C1-A .(accessed 2016).
  24. 24.
    Feller, W. (1968). An introduction to probability theory and its applications (Vol. 1). Hoboken: Wiley.zbMATHGoogle Scholar
  25. 25.
    Hanumolu, P. K., Wei, G. Y., & Moon, U. K. (2008). A wide-tracking range clock and data recovery circuit. IEEE Journal of Solid-State Circuits, 43(2), 425–439.CrossRefGoogle Scholar
  26. 26.
    Song, H., Kim, D. S., Oh, D. H., Kim, S., & Jeong, D. K. (2011). A 1.0–4.0-Gb/s all-digital CDR with 1.0-ps period resolution DCO and adaptive proportional gain control. IEEE Journal of Solid-State Circuits, 46(2), 424–434.CrossRefGoogle Scholar
  27. 27.
    Buckwalter, J., Analui, B., & Hajimiri, A. (2004). Predicting data-dependent jitter. IEEE Transactions on Circuits and Systems II: Express Briefs, 51(9), 453–457.CrossRefGoogle Scholar
  28. 28.
    Demir, A., Mehrotra, A., & Roychowdhury, J. (2000). Phase noise in oscillators: a unifying theory and numerical methods for characterization. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(5), 655–674.CrossRefGoogle Scholar
  29. 29.
    Ravezzi, L., & Partovi, H. (2015). Clock and synchronization networks for a 3 GHz 64 bit ARMv8 8-Core SoC. IEEE Journal of Solid-State Circuits, 50(7), 1702–1710.CrossRefGoogle Scholar
  30. 30.
    Kadayinti, N., & Sharma D. K. (2016). Testable design of repeaterless low swing on-chip interconnect. In Proceedings of design, automation and test in Europe (DATE), pp. 563–566.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Department of Electrical EngineeringIndian Institute of Technology DharwadDharwadIndia
  2. 2.Department of Information EngineeringThe Chinese University of Hong KongSha TinHong Kong
  3. 3.The Department of Electrical EngineeringIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations