Advertisement

Analysis of nonlinear crosstalk impairment in MIMO-OFDM systems

  • Amir Vaezi
  • Abdolali Abdipour
  • Abbas Mohammadi
  • Fadhel Ghannouchi
Article
  • 45 Downloads

Abstract

An analytical modeling and performance analysis for a multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) transceiver exhibiting crosstalk and nonlinear distortion in transmitting chain is presented. For this purpose, a two-dimensional memory polynomial is used to describe the dynamic nonlinear MIMO transmitter. It is shown that the impairment of nonlinear crosstalk can be characterized by two complex attenuations and a nonlinear additive noise. Moreover, an analytical formulation for the symbol error rate (SER) of MIMO-OFDM system considering a frequency selective channel is provided. Experimental results have been employed to extract a realistic model for the nonlinear transmitter in the presence of crosstalk. Also, a model of the linearized transmitter has been calculated after experimentally applying digital predistortion (DPD). The proposed model for the system is validated by the simulation results and a good agreement between the analytical and simulation results is observed. Finally, it is shown that nonlinear crosstalk degrades SER of the system, whereas, the DPD can effectively compensate for the nonlinearity and crosstalk infections, which, in turn, improves SER of the MIMO-OFDM system.

Keywords

Digital predistortion (DPD) High power amplifier (HPA) Multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) RF crosstalk Memory polynomial (MP) System modeling 

References

  1. 1.
    Zhu, H., & Wang, J. (2012). Chunk-based resource allocation in OFDMA systems—Part II: Joint chunk, power and bit allocation. IEEE Transactions on Communications, 60(6), 499–509.CrossRefGoogle Scholar
  2. 2.
    Zhu, H., & Wang, J. (2009). Chunk-based resource allocation in OFDMA systems—Part I: Chunk allocation. IEEE Transactions on Communications, 57(9), 2734–2744.CrossRefGoogle Scholar
  3. 3.
    Zhu, H. (2012). Radio resource allocation for OFDMA systems in high speed environments. IEEE Journal on Selected Areas in Communications, 30(4), 748–759.CrossRefGoogle Scholar
  4. 4.
    Paulraj, A. J., Gore, D. A., Nabar, R. U., & Bolcskei, H. (2004). An overview of MIMO communications—A key to gigabit wireless. Proceedings of the IEEE, 92(2), 198–218.CrossRefGoogle Scholar
  5. 5.
    Gesbert, D., Shafi, M., Shiu, D., Smith, P. J., & Naguib, A. (2003). From theory to practice: An overview of MIMO space-time coded wireless systems. IEEE Journal on Selected Areas in Communications, 21(3), 281–302.CrossRefGoogle Scholar
  6. 6.
    Gregorio, F., Werner, S., Cousseau, J., & Laakso, T. I. (2007). Receiver cancellation technique for nonlinear power amplifier distortion in SDMA OFDM systems. IEEE Transactions on Vehicular Technology, 56(5), 2499–2516.CrossRefGoogle Scholar
  7. 7.
    Vaezi, A., Abdipour, A., & Mohammadi, A. (2012). Nonlinear analysis of microwave amplifiers excited by multicarrier modulated signals using envelop transient technique. Analog Integrated Circuits and signal Processing, 73(1), 1–11.CrossRefGoogle Scholar
  8. 8.
    Vaezi, A., Abdipour, A., & Mohammadi, A. (2011). Analysis of nonlinear microwave circuits excited by multi-tone signals using artificial frequency mapping method. Informacije MIDEM, Journal of Microelectronics, Electronic Components and Materials, 41(3), 182–185.Google Scholar
  9. 9.
    Bohara, V. A., & Ting, S. H. (2009). Analytical performance of orthogonal frequency division multiplexing systems impaired by a non-linear high power amplifier with memory. IET Communications, 3(10), 1659–1666.CrossRefGoogle Scholar
  10. 10.
    Vaezi, A., Abdipour, A., Mohammadi, A., & Ghannouchi, F. M. (2016). Analysis of MIMO-OFDM system impaired by nonlinear dual-band power amplifiers. Analog Integrated Circuits and Signal Processing, 89(1), 205–212.CrossRefGoogle Scholar
  11. 11.
    Madani, M. H., Abdipour, A., & Mohammadi, A. (2010). Analytical performance evaluation of the OFDM systems in the presence of jointly fifth order nonlinearity and phase noise. Journal of Analog Integrated Circuits and Signal Processing, 66(1), 103–115.CrossRefGoogle Scholar
  12. 12.
    Sulyman, A. I., & Ibnkahla, M. (2008). Performance of MIMO systems with antenna selection over nonlinear fading channels. IEEE Journal of Selected Topics in Signal Processing, 2(4), 1–12.CrossRefGoogle Scholar
  13. 13.
    Qi, J., & Aissa, S. (2010). Analysis and compensation of power amplifier nonlinearity in MIMO transmit diversity systems. IEEE Transactions on Vehicular Technology, 59(6), 2921–2931.CrossRefGoogle Scholar
  14. 14.
    Hemesi, H., Abdipour, A., & Mohammadi, A. (2013). Analytical modeling of MIMO-OFDM system in the presence of nonlinear power amplifier with memory. IEEE Transactions on Communications, 61, 155–163.CrossRefGoogle Scholar
  15. 15.
    Fu, Z., Anttila, L., Abdelaziz, M., Valkama, M., & Wyglinski, A. M. (2015). Frequency-selective digital predistortion for unwanted emission reduction. IEEE Transactions on Communications, 63(1), 254–267.CrossRefGoogle Scholar
  16. 16.
    Yiming, L., O’Droma, M., & Ye, J. (2014). A practical analysis of performance optimization in OSTBC based nonlinear MIMO-OFDM systems. IEEE Transactions on Communications, 62(3), 930–938.CrossRefGoogle Scholar
  17. 17.
    Iofedov, I., & Wulich, D. (2015). MIMO–OFDM with nonlinear power amplifiers. IEEE Transactions on Communications, 63(12), 4894–4904.CrossRefGoogle Scholar
  18. 18.
    Hemesi, H., Abdipour, A., & Mohammadi, A. (2014). Statistical modelling of a non-linear high-power amplifier with memory in multi-input-multi-output orthogonal frequency division multiplexing systems. IET Communications, 8(5), 714–721.CrossRefGoogle Scholar
  19. 19.
    Palaskas, Y., Ravi, A., Pellerano, S., Carlton, B. R., Elmala, M. A., Bishop, R., et al. (2006). A 5-GHz 108-Mb/s 2 × 2 MIMO transceiver RFIC with fully integrated 20.5-dBm P1dB power amplifiers in 90-nm CMOS. IEEE Journal of Solid-State Circuits, 41(12), 2746–2756.CrossRefGoogle Scholar
  20. 20.
    Bassam, S., Helaoui, M., & Ghannouchi, F. (2009). Crossover digital predistorter for the compensation of crosstalk and nonlinearity in MIMO transmitters. IEEE Transactions on Microwave Theory and Techniques, 57(5), 1119–1128.CrossRefGoogle Scholar
  21. 21.
    Bassam, S. A., Helaoui, M., Boumaiza, S., & Ghannouchi, F. M. (2008). Experimental study of the effects of RF front-end imperfection on theMIMO transmitter performance. In IEEE MTT-S international microwave symposium digest, Atlanta, GA, pp. 1187–1190.Google Scholar
  22. 22.
    Duman, T. M., & Ghrayeb, A. (2008). Coding for MIMO communication systems. New York: Wiley.zbMATHGoogle Scholar
  23. 23.
    Medvedev, I., Bjerke, B. A., Walton, R., Ketchum, J., Wallace, M., & Howard, S. (2006). A comparison of MIMO receiver structures for 802.11n WLAN—Performance and complexity. In 17th annual IEEE international symposium on personal, indoor and mobile radio communications symposium, pp. 1–5.Google Scholar
  24. 24.
    Saffar, D., Boulejfen, N., Ghannouchi, F. M., Gharsallah, A., & Helaoui, M. (2011). Behavioral modeling of MIMO nonlinear systems with multivariable polynomials. IEEE Transaction on Microwave Theory and Techniques, 59(11), 2994–3003.CrossRefGoogle Scholar
  25. 25.
    Vejdani Amiri, M., Bassam, S. A., Helaoui, M., & Ghannouchi, F. M. (2013). New order selection technique using information criteria applied to SISO and MIMO systems predistortion. International Journal of Microwave and Wireless Technologies, 5(2), 123–131.CrossRefGoogle Scholar
  26. 26.
    Amin, S., Landin, P. N., Handel, P., & Ronnow, D. (2014). Behavioral modeling and linearization of crosstalk and memory effects in RF MIMO transmitters. IEEE Transactions on Microwave Theory and Techniques, 62(4), 810–823.CrossRefGoogle Scholar
  27. 27.
    Vaezi, A., Abdipour, A., Mohammadi, A., & Ghannouchi, F. M. (2017). On the modeling and compensation of backward crosstalk in MIMO transmitters. IEEE Microwave and Wireless Components Letters, 27(9), 842–844.CrossRefGoogle Scholar
  28. 28.
    Dardari, D., Tralli, V., & Vaccari, A. (2000). A theoretical characterization of nonlinear distortion effects in OFDM systems. IEEE Transactions on Communications, 48(10), 1755–1764.CrossRefGoogle Scholar
  29. 29.
    Helaoui, M., Boumaiza, S., Ghazel, A., & Ghannouchi, F. M. (2006). Power and efficiency enhancement of 3G multi-carrier amplifiers using digital signal processing with experimental validation. IEEE Transactions on Microwave Theory and Techniques, 54(4), 1396–1404.CrossRefGoogle Scholar
  30. 30.
    Zhang, X., Su, Y., & Tao, G. (2010). Signal detection technology research of MIMO-OFDM system. International Congress Image and Signal Processing, 7(11), 3031–3034.CrossRefGoogle Scholar
  31. 31.
    Kiessling, M., & Speidel, J. (2003). Analytical performance of MIMO zero-forcing receivers in correlated ray leigh fading environments. In Proceedings of IEEE workshop SPAWC 2003, pp. 383–387.Google Scholar
  32. 32.
    Proakis, J., & Salehi, M. (2007). Digital communications, 5th edn. McGraw-Hill.Google Scholar
  33. 33.
    Hammi, O., Kwan, A., & Ghannouchi, F. M. (2013). Bandwidth and power scalable digital predistorter for compensating dynamic distortions in RF power amplifiers. IEEE Transactions on Broadcasting, 59(3), 520–527.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Amir Vaezi
    • 1
    • 2
  • Abdolali Abdipour
    • 1
  • Abbas Mohammadi
    • 1
  • Fadhel Ghannouchi
    • 2
  1. 1.Micro/mm-Wave and Wireless Communication Research Lab, Radio Communications Center of Excellence, Electrical Engineering DepartmentAmirkabir University of TechnologyTehranIran
  2. 2.Intelligent RF Radio Laboratory (iRadio Lab), Department of Electrical and Computer EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations