Advertisement

A robust, ultra low-power, data-dependent-power-supplied 11T SRAM cell with expanded read/write stabilities for internet-of-things applications

  • Vishal Sharma
  • Maisagalla Gopal
  • Pooran Singh
  • Santosh Kumar Vishvakarma
  • Shailesh Singh Chouhan
Article
  • 49 Downloads

Abstract

With the increased requirement of on-chip data computations in internet of things based applications, the embedded on-chip SRAM memory has been under its renovation stage to overcome the classical problems like stability and poor energy efficiency. In this work, a data-dependent-power-supply mechanism for a new 11T SRAM cell is proposed with ultra-low leakage and improved read/write stability against the process–voltage–temperature variations. The proposed cell consumes static power in the fraction of picowatt range and has considerable enhancement in the value of write static noise margin (WSNM). In addition, the use of associated read decoupling approach, with the column-based read buffer, further improves the read stability of the proposed cell and make it comparable with the hold stability value. The percentage reduction in the leakage power of proposed 11T cell is \(99.97\%\), \(99.93\%\) and \(99.97\%\), while the WSNM 1 is \(6.98\times\), \(3.12\times\) and \(1.46\times\), and WSNM 0 is \(5.55\times\), \(1.25\times\) and \(1.16\times\) larger when operating at 0.4 V and compared to the conventional 6T and threshold voltage techniques based VTH_9T and data aware write assist (DAWA) 12T SRAM cell structures respectively. \(I_{read}{/}I_{leak}\) ratio for the proposed cell has improved by \(6.55\times\), \(6.22\times\) and \(5.11\times\) when compared with the 6T, VTH_9T and DAWA12T SRAM to increase the memory density. Further, the post-layout Monte Carlo simulation results (2000 samples) confirm the robustness of the proposed cell against the process variations.

Keywords

static random access memory (SRAM) Ultra-low power Static noise margin (SNM) Write ability Internet of things (IoT) 

Notes

Acknowledgements

The authors would like to thank Special Manpower Development Program for Chips to System Design (SMDP-C2SD) research project of Department of Electronics and Information Technology (DEITY) under Ministry of Communication and Information Technology, Government of India to provide the lab facilities. Authors are also thankful to the Center for International Mobility (CIMO Grant No.: Intia-1- 2016-03), and Aalto University, Finland for their financial support and the lab facility.

References

  1. 1.
    Patrik, G., & Gattani, A. (2015). Memory plays a vital role in building the connected word. Electronic Design, 1, 1–6.Google Scholar
  2. 2.
    Hodge, V. J., O’Keefe, S., Weeks, M., & Moulds, A. (2015). Wireless sensor networks for condition monitoring in the railway industry: A survey. IEEE Transactions on Intelligent Transportation Systems, 16(3), 1088–1106.CrossRefGoogle Scholar
  3. 3.
    Gupta, N., Makosiej, A., Vladimirescu, A., Amara, A., & Anghel, C. (2016). Ultra-compact SRAM design using TFETs for low power low voltage applications. In IEEE international symposium on circuits and systems (ISCAS) (pp. 594–597). IEEE.Google Scholar
  4. 4.
    Jayakumar, H., Lee, K., Lee, W. S., Raha, A., Kim, Y., & Raghunathan, V. (2014) Powering the internet of things. In Proceedings of the 2014 international symposium on low power electronics and design (pp. 375–380). ACM.Google Scholar
  5. 5.
    Lu, C., Raghunathan, V., & Roy, K. (2011). Efficient design of micro-scale energy harvesting systems. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 1(3), 254–266.CrossRefGoogle Scholar
  6. 6.
    Wang, A., Calhoun, B. H., & Chandrakasan, A. P. (2006). Sub-threshold design for ultra low-power systems (Vol. 95). Berlin: Springer.Google Scholar
  7. 7.
    Kursun, V., & Friedman, E. G. (2006). Multi-voltage CMOS circuit design. Hoboken: Wiley.CrossRefGoogle Scholar
  8. 8.
    Sharma, V., & Kumar, S. (2011). Design of low-power CMOS cell structures using subthreshold conduction region. International Journal of Scientific and Engineering Research, 2(2), 29–34.MathSciNetGoogle Scholar
  9. 9.
    Verma, N., & Chandrakasan, A. P. (2008). A 256 kb 65 nm 8T subthreshold SRAM employing sense-amplifier redundancy. IEEE Journal of Solid-State Circuits, 43(1), 141–149.CrossRefGoogle Scholar
  10. 10.
    Wang, B., Zhou, J., & Kim, T. T.-H. (2015). SRAM devices and circuits optimization toward energy efficiency in multi-Vth CMOS. Microelectronics Journal, 46(3), 265–272.CrossRefGoogle Scholar
  11. 11.
    Moghaddam, M., Timarchi, S., Moaiyeri, M. H., & Eshghi, M. (2016). An ultra-low-power 9T SRAM cell based on threshold voltage techniques. Circuits, Systems, and Signal Processing, 35(5), 1437–1455.CrossRefGoogle Scholar
  12. 12.
    Andrei, P., & Oniciuc, L. (2008). Suppressing random dopant-induced fluctuations of threshold voltages in semiconductor devices. Journal of Applied Physics, 104(10), 104508.CrossRefGoogle Scholar
  13. 13.
    Cai, H., Wang, Y., Naviner, L. A. D. B., & Zhao, W. (2017). Robust ultra-low power non-volatile logic-in-memory circuits in FD-SOI technology. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(4), 847–857.CrossRefGoogle Scholar
  14. 14.
    Chiu, Y.-W., Hu, Y.-H., Tu, M.-H., Zhao, J.-K., Chu, Y.-H., Jou, S.-J., et al. (2014). 40 nm bit-interleaving 12T subthreshold SRAM with data-aware write-assist. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(9), 2578–2585.CrossRefGoogle Scholar
  15. 15.
    Lo, C.-H., & Huang, S.-Y. (2011). PPN based 10T SRAM cell for low-leakage and resilient subthreshold operation. IEEE Journal of Solid-State Circuits, 46(3), 695–704.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Raychowdhury, A., Mukhopadhyay, S., & Roy, K. (2005) A feasibility study of subthreshold SRAM across technology generations. In Proceedings of the 2005 IEEE international conference on computer design: VLSI in computers and processors, 2005. ICCD 2005 (pp. 417–422). IEEE.Google Scholar
  17. 17.
    Wen, L., Li, Z., & Li, Y. (2013). Single-ended, robust 8T SRAM cell for low-voltage operation. Microelectronics Journal, 44(8), 718–728.CrossRefGoogle Scholar
  18. 18.
    Wang, B., Nguyen, T. Q., Do, A. T., Zhou, J., Je, M., & Kim, T. T.-H. (2015). Design of an ultra-low voltage 9T SRAM with equalized bitline leakage and CAM-assisted energy efficiency improvement. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(2), 441–448.CrossRefGoogle Scholar
  19. 19.
    Upadhyay, P., Kar, R., Mandal, D., & Ghoshal, S. P. (2015). A design of low swing and multi threshold voltage based low power 12T sram cell. Computers & Electrical Engineering, 45, 108–121.CrossRefGoogle Scholar
  20. 20.
    Ahmad, S., Gupta, M. K., Alam, N., & Hasan, M. (2017). Low leakage single bitline 9T (SB9T) static random access memory. Microelectronics Journal, 62, 1–11.CrossRefGoogle Scholar
  21. 21.
    Tu, M.-H., Lin, J.-Y., Tsai, M.-C., Lu, C.-Y., Lin, Y.-J., Wang, M.-H., et al. (2012). A single-ended disturb-free 9T subthreshold SRAM with cross-point data-aware write word-line structure, negative bit-line, and adaptive read operation timing tracing. IEEE Journal of Solid-State Circuits, 47(6), 1469–1482.CrossRefGoogle Scholar
  22. 22.
    Kushwah, C., Vishvakarma, S., & Dwivedi, D. (2016). Single-ended boost-less (SE-BL) 7T process tolerant SRAM design in sub-threshold regime for ultra-low-power applications. Circuits, Systems, and Signal Processing, 35(2), 385–407.CrossRefGoogle Scholar
  23. 23.
    Pal, S., & Islam, A. (2016). 9-T sram cell for reliable ultralow-power applications and solving multibit soft-error issue. IEEE Transactions on Device and Materials Reliability, 16(2), 172–182.CrossRefGoogle Scholar
  24. 24.
    Saeidi, R., Sharifkhani, M., & Hajsadeghi, K. (2014). A subthreshold symmetric SRAM cell with high read stability. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(1), 26–30.CrossRefGoogle Scholar
  25. 25.
    Kushwah, C., & Vishvakarma, S. K. (2016). A single-ended with dynamic feedback control 8T subthreshold SRAM cell. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(1), 373–377.CrossRefGoogle Scholar
  26. 26.
    Chang, M.-F., Chang, S.-W., Chou, P.-W., & Wu, W.-C. (2011). A 130 mV SRAM with expanded write and read margins for subthreshold applications. IEEE Journal of Solid-State Circuits, 46(2), 520–529.CrossRefGoogle Scholar
  27. 27.
    Ahmad, S., Gupta, M. K., Alam, N., & Hasan, M. (2016). Single-ended Schmitt-trigger-based robust low-power SRAM cell. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(8), 2634–2642.CrossRefGoogle Scholar
  28. 28.
    Kulkarni, J. P., & Roy, K. (2012). Ultralow-voltage process-variation-tolerant Schmitt-trigger-based sram design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(2), 319–332.CrossRefGoogle Scholar
  29. 29.
    Kulkarni, J. P., Kim, K., & Roy, K. (2007). A 160 mV robust Schmitt trigger based subthreshold SRAM. IEEE Journal of Solid-State Circuits, 42(10), 2303–2313.CrossRefGoogle Scholar
  30. 30.
    Chang, I. J., Kim, J.-J., Park, S. P., & Roy, K. (2009). A 32 kb 10T sub-threshold SRAM array with bit-interleaving and differential read scheme in 90 nm CMOS. IEEE Journal of Solid-State Circuits, 44(2), 650–658.CrossRefGoogle Scholar
  31. 31.
    Pal, S., & Islam, A. (2016). Variation tolerant differential 8T SRAM cell for ultralow power applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 35(4), 549–558.CrossRefGoogle Scholar
  32. 32.
    Tu, M.-H., Lin, J.-Y., Tsai, M.-C., Jou, S.-J., & Chuang, C.-T. (2010). Single-ended subthreshold SRAM with asymmetrical write/read-assist. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(12), 3039–3047.MathSciNetCrossRefGoogle Scholar
  33. 33.
    Jain, S., Khare, S., Yada, S., Ambili, V., Salihundam, P., Ramani, S., et al. (2012) A 280 mV-to-1.2 V wide-operating-range IA-32 processor in 32 nm CMOS. In IEEE International Conference on Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 (pp. 66–68). IEEE.Google Scholar
  34. 34.
    Kim, J., & Mazumder, P. (2017). A robust 12T SRAM cell with improved write margin for ultra-low power applications in 40 nm CMOS. Integration, The VLSI Journal, 57, 1–10.CrossRefGoogle Scholar
  35. 35.
    Takeda, K., Hagihara, Y., Aimoto, Y., Nomura, M., Nakazawa, Y., Ishii, T., et al. (2006). A read-static-noise-margin-free sram cell for low-VDD and high-speed applications. IEEE Journal of Solid-State Circuits, 41(1), 113–121.CrossRefGoogle Scholar
  36. 36.
    Alioto, M. (2010). Understanding DC behavior of subthreshold CMOS logic through closed-form analysis. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(7), 1597–1607.MathSciNetCrossRefGoogle Scholar
  37. 37.
    Kushwah, C., & Vishvakarma, S. K. (2012). Ultra-low power sub-threshold SRAM cell design to improve read static noise margin. In Progress in VLSI design and test (pp. 139–146). Springer.Google Scholar
  38. 38.
    Chang, M.-F., Wu, J.-J., Chen, K.-T., Chen, Y.-C., Chen, Y.-H., Lee, R., et al. (2010). A differential data-aware power-supplied (D2AP) 8T SRAM cell with expanded write/read stabilities for lower VDDmin applications. IEEE Journal of Solid-State Circuits, 45(6), 1234–1245.CrossRefGoogle Scholar
  39. 39.
    Narendra, S., De, V., Borkar, S., Antoniadis, D. A., & Chandrakasan, A. P. (2004). Full-chip subthreshold leakage power prediction and reduction techniques for sub-0.18-μm CMOS. IEEE Journal of Solid-State Circuits, 39(3), 501–510.CrossRefGoogle Scholar
  40. 40.
    Seevinck, E., List, F. J., & Lohstroh, J. (1987). Static-noise margin analysis of MOS SRAM cells. IEEE Journal of Solid-State Circuits, 22(5), 748–754.CrossRefGoogle Scholar
  41. 41.
    Pasandi, G., & Fakhraie, S. M. (2015). A 256-kb 9T near-threshold sram with 1k cells per bitline and enhanced write and read operations. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(11), 2438–2446.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nanoscale Devices, VLSI Circuit and System Design Lab, Department of Electrical EngineeringIndian Institute of TechnologyIndoreIndia
  2. 2.EISLAB, Department of Computer Science, Electrical and Space EngineeringLulea University of Technology LuleåSweden

Personalised recommendations