A stacked transistor approach to millimeter wave SiGe power amplifiers

  • Iancu SomesanuEmail author
  • Hermann Schumacher


This paper describes a design approach for stack connected transistor amplifiers used in the realization of two highly compact SiGe:C BiCMOS amplifiers. The first, realized in a 250 nm process, is designed to operate at Ka band and occupies an area of 0.24 \({{{\mathrm {mm}}}}^2\). It is capable of delivering a saturated output power of 16.8 dBm with an output 1 dB compression point of up to 15 dBm. It achieves a small signal gain higher than 15 dB and has a measured power added efficiency of 15%. The second is realized in a 130 nm process and operates at W band. Occupying an area of only 0.02 \({{{\mathrm {mm}}}}^2\), it has a small signal gain of 14 dB with a 33 GHz 3 dB bandwidth centered around 89 GHz. It consumes 104 mW from a 5 V supply and delivers a saturated output power of 9 dBm between 92 and 102 GHz in simulation.


Ka band Power amplifier SiGe:C BiCMOS W band SG13 SG25 



The work reported here was developed in the framework of “SKATE - A low cost BFN/RF Front End using Multi-node On Chip for Ka Band User Terminal” Project coordinated by Space Engineering S.p.A, Rome, Italy under the European Space Agency’s ARTES-5.1 program. The authors would like to thank Prof. Dr.-Ing.habil. Michael Schröter and Anindya Mukherjee from the Institute of Circuits and Systems, TU Dresden for their help with the fabrication of the W band amplifier.


  1. 1.
    Ezzeddine, A., & Huang, H. (2003). The high voltage high power FET (HiVP). In IEEE radio frequency integrated circuits (RFIC) symposium, 2003 (pp. 215–218).
  2. 2.
    Farmer, T. J., Darwish, A., Huebschman, B., Viveiros, E., Hung, H. A., & Zaghloul, M. E. (2011). Millimeter-wave sige HBT high voltage/high power architecture implementation. IEEE Microwave and Wireless Components Letters, 21(10), 544–546. Scholar
  3. 3.
    Dabag, H. T., Hanafi, B., Golcuk, F., Agah, A., Buckwalter, J. F., & Asbeck, P. M. (2013). Analysis and design of stacked-fet millimeter-wave power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 61(4), 1543–1556. Scholar
  4. 4.
    Cui, J., Helmi, S., Tang, Y., & Mohammadi, S. (2016). Stacking the deck for efficiency: Rf- to millimeter-wave stacked cmos soi power amplifiers. IEEE Microwave Magazine, 17(12), 55–69. Scholar
  5. 5.
    Somesanu, I., & Schumacher, H. (2017). A SiGe:C BiCMOS driver/balun/switch function block for a 30 GHz satcom transmit array. In 2017 IEEE 17th topical meeting on silicon monolithic integrated circuits in RF systems (SiRF) (pp. 47–49).Google Scholar
  6. 6.
    Gray, P., Hurst, P., Meyer, R., & Lewis, S. (2008). Analysis and design of analog integrated circuits, 4th edn. New York: Wiley India Pvt. Limited. Accessed Dec 2017.
  7. 7.
    Pornpromlikit, S., Jeong, J., Presti, C. D., Scuderi, A., & Asbeck, P. M. (2010). A watt-level stacked-fet linear power amplifier in silicon-on-insulator CMOS. IEEE Transactions on Microwave Theory and Techniques, 58(1), 57–64. Scholar
  8. 8.
    Dinc, T., Kalyoncu, I., Kaynak, M., & Gurbuz, Y. (2012). An X-band, high performance, SiGe-HBT power amplifier for phased arrays. In 2012 7th European microwave integrated circuit conference (pp. 472–475).Google Scholar
  9. 9.
    Noh, Y. S., & Park, C. S. (2002). PCS/W-CDMA dual-band MMIC power amplifier with a newly proposed linearizing bias circuit. IEEE Journal of Solid-State Circuits, 37(9), 1096–1099.Google Scholar
  10. 10.
    Yoshimasu, T., Akagi, M., Tanba, N., & Hara, S. (1998). An HBT MMIC power amplifier with an integrated diode linearizer for low-voltage portable phone applications. IEEE Journal of Solid-State Circuits, 33(9), 1290–1296. Scholar
  11. 11.
    Somesanu, I., & Schumacher, H. (2017). A highly compact, 16.8 dBm Psat Ka-band power amplifier in 250 nm SiGe:C BiCMOS. In 2017 IEEE nordic circuits and systems conference (NORCAS): NORCHIP and international symposium of system-on-chip (SoC) (pp. 1–4).
  12. 12.
    Farmer, T. J., Darwish, A., Huebschman, B., Viveiros, E., Hung, H. A., & Zaghloul, M. E. (2011). Class-A stacked SiGe HBT power amplifier at millimeter-wave. In 2011 international semiconductor device research symposium (ISDRS) (pp. 1–2).
  13. 13.
    Heinemann, B., Barth, R., Knoll, D., Rucker, H., Tillack, B., & Winkler, W. (2006). High-performance BiCMOS technologies without epitaxially-buried subcollectors and deep trenches. In 2006 international SiGe technology and device meeting (pp. 1–2).Google Scholar
  14. 14.
    Rcker, H., Heinemann, B., & Fox, A. (2012). Half-terahertz SiGe BICMOS technology. In 2012 IEEE 12th topical meeting on silicon monolithic integrated circuits in RF systems (pp. 133–136).
  15. 15.
    Chen, C., Yang, X., & Yoshimasu, T. (2016). A 30-GHz band high-efficiency class-j power amplifier IC in 120-nm SiGe HBT technology. In 2016 IEEE international symposium on radio-frequency integration technology (RFIT) (pp. 1–3).
  16. 16.
    Essing, J., Leenaerts, D., & Mahmoudi, R. (2014). A 27 GHZ, 31 dBm power amplifier in a 0.25 \(\mu\)m SiGe:c BICMOS technology. In 2014 IEEE bipolar/BiCMOS circuits and technology meeting (BCTM) (pp. 143–146).
  17. 17.
    Nguyen, D. P., Pham, T., Pham, B. L., & Pham, A. V. (2016). A high efficiency high power density harmonic-tuned ka band stacked-FET GAAS power amplifier. In 2016 IEEE compound semiconductor integrated circuit symposium (CSICS) (pp. 1–4).
  18. 18.
    Song, P., Ulusoy, A.., Schmid, R. L., Zeinolabedinzadeh, S. N., & Cressler, J. D. (2014). W-band sige power amplifiers. In: 2014 IEEE bipolar/BiCMOS circuits and technology meeting (BCTM) (pp. 151–154).
  19. 19.
    Chappidi, C. R., & Sengupta, K. (2017). A W-band sige power amplifier with PSAT of 23 dBm and PAE of 16.8. In 2017 IEEE MTT-S international microwave symposium (IMS) (pp. 1699–1702).
  20. 20.
    Agah, A., Jayamon, J. A., Asbeck, P. M., Larson, L. E., & Buckwalter, J. F. (2014). Multi-drive stacked-fet power amplifiers at 90 GHz in 45 nm SOI CMOS. IEEE Journal of Solid-State Circuits, 49(5), 1148–1157. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Electron Devices and CircuitsUlm UniversityUlmGermany

Personalised recommendations