Advertisement

Analog Integrated Circuits and Signal Processing

, Volume 98, Issue 2, pp 299–310 | Cite as

Design and simulation of all-optical precoder for differential quadrature phase shift keying (DQPSK) modulator

  • R. Manohari
  • Shanthi PrinceEmail author
  • Satyasai Sribhashyam
Article
  • 56 Downloads

Abstract

Differential quadrature phase shift keying (DQPSK) encodes the phase change from one symbol period to the next. The precoder is designed for this purpose. The main objective of this paper is to design a simple precoder of the DQPSK transmitter. The precoder is designed using various blocks such as multiplexers, logic gates and flip-flops. The blocks are designed using Mach–Zehnder Interferometer-Semiconductor Optical Amplifier. The designed optical precoder is simulated and tested. It is capable of mapping input bit streams to quadrature components at a data rate up to 10 Gbps. Performance parameters such as Q factor and BER are analyzed for various data rates from 2 to 10 Gbps. The values of Q factor and BER at a data rate of 10 Gbps are found to be 5.4 and 1.5e−8 respectively. Hence, it is suitable for the high-speed transmission system.

Keywords

Precoder Differential quadrature phase shift keying transmitter Mach–Zehnder Interferometer-Semiconductor Optical Amplifier All optical logic gates 

References

  1. 1.
    Tokle, T., et al. (2004). 6500 km transmission of RZ-DQPSK WDM signals. Electronics Letter, 40(7), 444–445.CrossRefGoogle Scholar
  2. 2.
    Wang, J., & Kahn, J. M. (2004). Impact of chromatic and polarization-mode dispersions on DPSK systems using interferometric demodulation and direct detection. Journal of Lightwave Technology, 22(2), 362–371.CrossRefGoogle Scholar
  3. 3.
    Griffin, R. A., Johnstone, R. I., Walker, R. G., & Hall, J. (2002). 10 Gb/s optical differential quadrature phase shift key (DQPSK) transmission using GaAs/AlGaAs integration. In Proceedings of optical fiber communication conference and exhibit, 02, OFC 02. IEEE, Anaheim, CA, USA (pp. FD6-1–FD6-3).Google Scholar
  4. 4.
    Wree, C., Leibrich, J., & Rosenkranz, W. (2002). RZ-DQPSK format with high spectral efficiency and high robustness towards fiber nonlinearities. In Proceedings of ECOC 02. 28th European conference on optical communication, Copenhagen, Denmark (Vol. 4, pp. 1–2). IEEE.Google Scholar
  5. 5.
    Zhu, Y., Cordina, K., Jolley, N., Feced, R., Kee, H., Rickard, R., & Hadjifotiou, A. (2004) 1.6 bit/s/Hz orthogonally polarized CSRZ–DQPSK transmission of 8 × 40 Gbit/s over 3 km NDSF. In Proceedings of optical fiber communication conference (OFC’04), Los Angeles, CA, USA (p. TuF1). Optical Society of America.Google Scholar
  6. 6.
    Yoshikane, N., & Morita, I. (2004). 1.14 b/s/Hz spectrally-efficient 50/spl times/85.4 Gb/s transmission over 300 km using co-polarized CS-RZ DQPSK signals. In Proceedings of optical fiber communication conference (OFC’04), Los Angeles, CA, USA, Paper PDP38.Google Scholar
  7. 7.
    Serbay, M., Wree, C., & Rosenkranz, W. (2004). Implementation of differential precoder for high speed optical DQPSK transmission. Electronics Letters, 40, 1288–1289.CrossRefGoogle Scholar
  8. 8.
    Griffin, R. A., & Carter, A. C. (2002). Optical differential quadrature phase-shift key (oDQPSK) for high capacity optical transmission. In Proceedings of optical fiber communication conference and exhibit, 02. OFC 02, Anaheim, CA, USA (pp. 367–368). IEEE.Google Scholar
  9. 9.
    Kramer, G., Ashikhmin, A., Van Wijngaarden, A. J., & Wei, X. (2003). Spectral efficiency of coded phase-shift keying for fiber-optic communication. Journal of Lightwave Technology, 21(10), 2438–2445.CrossRefGoogle Scholar
  10. 10.
    Yue, P., Wen, A., Shang, T., & Wang, C. (2008). Implementation of differential precoder for high-speed optical DQPSK modulation. In Proceedings of wireless and optical communication networks, 08.WOCN’08. 5th IFIP international conference (pp. 1–3). IEEE.Google Scholar
  11. 11.
    Singh, P., Tripathi, D. K., Jaiswal, S., & Dixit, H. K. (2014). All-optical logic gates: Designs, classification, and comparison. Advances in Optical Technologies, 14(14), 1–13.Google Scholar
  12. 12.
    Singh, P., Tripathi, D. K., Jaiswal, S., & Dixit, H. K. (2015). Design and analysis of all-optical AND, XOR and OR gates based on SOA-MZI configuration. Optics & Laser Technology, 66, 35–44.CrossRefGoogle Scholar
  13. 13.
    Singh, P., Tripathi, D. K., & Dixit, H. K. (2014). Designs of all-optical NOR gates using SOA based MZI. Optik-International Journal for Light and Electron Optics, 125(14), 4437–4440.CrossRefGoogle Scholar
  14. 14.
    Lovkesh, A., & Marwaha, A. (2015). Implementation of optical logic gates at 160 Gbps using nonlinear effect of single SOA. Optics & Laser Technology, 70(15), 112–118.CrossRefGoogle Scholar
  15. 15.
    Gnauck, A. H., & Winzer, P. J. (2005). Optical phase shift keyed transmission. Journal of Lightwave Technology, 23(1), 115–130.CrossRefGoogle Scholar
  16. 16.
    Ho, K.-P. (2005). Phase-modulated optical communication systems. New York: Springer.Google Scholar
  17. 17.
    Zhao, L., Shankar, H., & Nachum, A. (2007). 40G QPSK and DQPSK modulation. Westlake Village: Inphi Corporation.Google Scholar
  18. 18.
    Manohari, R., Maruthi, K. N., & Prince, S. (2017). Performance analysis of all-optical D-flip-flop. International Journal of Control Theory and Applications, 10(16), 39–53.Google Scholar
  19. 19.
    Archana, K., Manohari, R., & Prince, S. (2018). Performance analysis of different designs of all-optical D flip flop. International Journal of Engineering and Technology, 7(2.8), 578–582.CrossRefGoogle Scholar
  20. 20.
    Kim, J. Y., Kang, J. M., Kim, T. Y., & Han, S. K. (2006). All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: Theory and experiment. Journal of Lightwave Technology, 24(9), 3392.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • R. Manohari
    • 1
  • Shanthi Prince
    • 1
    Email author
  • Satyasai Sribhashyam
    • 1
  1. 1.Department of Electronics and Communication EngineeringSRM Institute of Science and TechnologyKattankulathurIndia

Personalised recommendations