Advertisement

Robust hardware-supported chaotic cryptosystems for streaming commutations among reduced computing power nodes

  • Pilar Mareca
  • Borja BordelEmail author
Article
  • 38 Downloads

Abstract

Most recent technological proposals, such as cyber–physical systems or wireless sensor networks, consist of a collection of tiny nodes designed to be seamless integrated into daily living objects. These nodes then, due to their miniaturized configuration, use to present very limited processing capabilities. Because of that, in general complex algorithms, as which are employed today to secure communications, cannot be implemented in these new systems. Thus, new instruments for security are needed, with a special mention to hardware-supported solutions. Therefore, in this paper different robust hardware-supported cryptosystems based on Chua’s circuit are proposed, studied ad compared. The described solutions are specifically designed to be employed in streaming communications among reduced computing power nodes. Moreover, an experimental validation is proposed comparing the performance of the proposed technologies and other existing solutions.

Keywords

Cryptography Chaos Hardware-supported technologies Chaotic cryptosystems Chaotic masking Chua’s circuit 

Mathematics Subject Classification

34H10 34D06 37C75 

Notes

Acknowledgements

Borja Bordel has received funding from the Ministry of Economy and Competitiveness through SEMOLA Project (TEC2015-68284-R), from the Centre for the Development of Industrial Technology (CDTI) through PERIMETER SECURITY Project (ITC-20161228), from the Autonomous Region of Madrid through MOSI-AGIL-CM Project (Grant P2013/ICE-3019, co-funded by EU Structural Funds FSE and FEDER) and from the Ministry of Education through the FPU program (Grant Number FPU15/03977).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

  1. 1.
    Bordel, B., Alcarria, R., Martín, D., Robles, T., & de Rivera, D. S. (2017). Self-configuration in humanized cyber–physical systems. Journal of Ambient Intelligence and Humanized Computing, 8(4), 485–496.Google Scholar
  2. 2.
    Akyildiz, I. F., & Vuran, M. C. (2010). Wireless sensor networks (Vol. 4). New York: Wiley.zbMATHGoogle Scholar
  3. 3.
    Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.Google Scholar
  4. 4.
    Vieira, M. A. M., Coelho, C. N., da Silva, D. C., & da Mata, J. M. (2003). Survey on wireless sensor network devices. In IEEE conference emerging technologies and factory automation (Vol. 1, pp. 537–544). IEEE.Google Scholar
  5. 5.
    Bordel, B., Alcarria, R., Robles, T., & Martín, D. (2017). Cyber–physical systems: Extending pervasive sensing from control theory to the Internet of Things. Pervasive and Mobile Computing, 40, 156–184.Google Scholar
  6. 6.
    Portilla, J., Otero, A., de la Torre, E., Riesgo, T., Stecklina, O., Peter, S., et al. (2010). Adaptable security in wireless sensor networks by using reconfigurable ECC hardware coprocessors. International Journal of Distributed Sensor Networks, 6, 740.Google Scholar
  7. 7.
    Mareca, P., & Bordel, B. (2017). A robust implementation of a chaotic cryptosystem for streaming communications in wireless sensor networks. In World conference on information systems and technologies (pp. 95–104). Cham: Springer.Google Scholar
  8. 8.
    Avizienis, A., Laprie, J. C., Randell, B., & Landwehr, C. (2004). Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions on Dependable and Secure Computing, 1(1), 11–33.Google Scholar
  9. 9.
    Zhang, M., Selic, B., Ali, S., Yue, T., Okariz, O., & Norgren, R. (2016). Understanding uncertainty in cyber–physical systems: A conceptual model. In European conference on modelling foundations and applications (pp. 247–264). Cham: Springer.Google Scholar
  10. 10.
    Cardenas, A., Amin, S., Sinopoli, B., Giani, A., Perrig, A., & Sastry, S. (2009). Challenges for securing cyber physical systems. In Workshop on future directions in cyber–physical systems security (Vol. 5).Google Scholar
  11. 11.
    Wang, Y., Attebury, G., & Ramamurthy, B. (2006). A survey of security issues in wireless sensor networks. CSE Journal Articles. http://digitalcommons.unl.edu/csearticles/84.
  12. 12.
    Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.zbMATHGoogle Scholar
  13. 13.
    Karlof, C., & Wagner, D. (2003). Secure routing in wireless sensor networks: Attacks and countermeasures. Ad Hoc Networks, 1(2), 293–315.Google Scholar
  14. 14.
    Deng, J., Han, R., & Mishra, S. (2003). A performance evaluation of intrusion-tolerant routing in wireless sensor networks. In Information processing in sensor networks (pp. 552). Berlin/Heidelberg: Springer.Google Scholar
  15. 15.
    Karlof, C., Sastry, N., & Wagner, D. (2004). TinySec: A link layer security architecture for wireless sensor networks. In Proceedings of the 2nd international conference on embedded networked sensor systems (pp. 162–175). ACM.Google Scholar
  16. 16.
    Perrig, A., Szewczyk, R., Tygar, J. D., Wen, V., & Culler, D. E. (2002). SPINS: Security protocols for sensor networks. Wireless Networks, 8(5), 521–534.zbMATHGoogle Scholar
  17. 17.
    Portilla, J., Otero, A., de la Torre, E., Riesgo, T., Stecklina, O., Peter, S., et al. (2010). Adaptable security in wireless sensor networks by using reconfigurable ECC hardware coprocessors. International Journal of Distributed Sensor Networks, 6, 740.Google Scholar
  18. 18.
    Heer, T., Garcia-Morchon, O., Hummen, R., Keoh, S. L., Kumar, S. S., & Wehrle, K. (2011). Security challenges in the IP-based internet of things. Wireless Personal Communications, 61(3), 527–542.Google Scholar
  19. 19.
    Akella, R., Tang, H., & McMillin, B. M. (2010). Analysis of information flow security in cyber–physical systems. International Journal of Critical Infrastructure Protection, 3(3), 157–173.Google Scholar
  20. 20.
    Babar, S., Stango, A., Prasad, N., Sen, J., & Prasad, R. (2011). Proposed embedded security framework for internet of things (IoT). In 2011 2nd international conference on wireless communication, vehicular technology, information theory and aerospace and electronic systems technology (wireless VITAE) (pp. 1–5). IEEE.Google Scholar
  21. 21.
    Zhou, L., & Chao, H. C. (2011). Multimedia traffic security architecture for the internet of things. IEEE Network, 25(3), 35.Google Scholar
  22. 22.
    Ning, H., Liu, H., & Yang, L. T. (2013). Cyberentity security in the internet of things. Computer, 46(4), 46–53.Google Scholar
  23. 23.
    Medaglia, C. M., & Serbanati, A. (2010). An overview of privacy and security issues in the internet of things. In The internet of things (pp. 389–395). New York: Springer.Google Scholar
  24. 24.
    Sicari, S., Rizzardi, A., Grieco, L. A., & Coen-Porisini, A. (2015). Security, privacy and trust in internet of things: The road ahead. Computer Networks, 76, 146–164.Google Scholar
  25. 25.
    Cao, J., Carminati, B., Ferrari, E., & Tan, K. L. (2011). Castle: Continuously anonymizing data streams. IEEE Transactions on Dependable and Secure Computing, 8(3), 337–352.Google Scholar
  26. 26.
    Alcaide, A., Palomar, E., Montero-Castillo, J., & Ribagorda, A. (2013). Anonymous authentication for privacy-preserving IoT target-driven applications. Computers and Security, 37, 111–123.Google Scholar
  27. 27.
    Peng, L., Ru-chuan, W., Xiao-yu, S., & Long, C. (2013). Privacy protection based on key-changed mutual authentication protocol in internet of things. In China conference wireless sensor networks (pp. 345–355). Berlin: Springer.Google Scholar
  28. 28.
    Pathan, A. S. K., Lee, H. W., & Hong, C. S. (2006). Security in wireless sensor networks: issues and challenges. In 8th international conference advanced communication technology (Vol. 2). IEEE.Google Scholar
  29. 29.
    Kocarev, L., & Parlitz, U. (1995). General approach for chaotic synchronization with applications to communication. Physical Review Letters, 74(25), 5028.Google Scholar
  30. 30.
    Voss, H. U. (2000). Anticipating chaotic synchronization. Physical Review E, 61(5), 5115.Google Scholar
  31. 31.
    Rosenblum, M. G., Pikovsky, A. S., & Kurths, J. (1997). From phase to lag synchronization in coupled chaotic oscillators. Physical Review Letters, 78(22), 4193.zbMATHGoogle Scholar
  32. 32.
    Pikovsky, A. S., Rosenblum, M. G., & Kurths, J. (1996). Synchronization in a population of globally coupled chaotic oscillators. EPL (Europhysics Letters), 34(3), 165.Google Scholar
  33. 33.
    Pareek, N. K., Patidar, V., & Sud, K. K. (2003). Discrete chaotic cryptography using external key. Physics Letters A, 309(1), 75–82.MathSciNetzbMATHGoogle Scholar
  34. 34.
    Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical Review Letters, 64(8), 821.MathSciNetzbMATHGoogle Scholar
  35. 35.
    Vaidya, P. G., & Angadi, S. (2003). Decoding chaotic cryptography without access to the superkey. Chaos, Solitons and Fractals, 17(2), 379–386.MathSciNetzbMATHGoogle Scholar
  36. 36.
    Wong, K. W., Ho, S. W., & Yung, C. K. (2003). A chaotic cryptography scheme for generating short ciphertext. Physics Letters A, 310(1), 67–73.MathSciNetzbMATHGoogle Scholar
  37. 37.
    Li, S., Li, Q., Li, W., Mou, X., & Cai, Y. (2001). Statistical properties of digital piecewise linear chaotic maps and their roles in cryptography and pseudo-random coding. In IMA international conference on cryptography and coding (pp. 205–221). Berlin: Springer.Google Scholar
  38. 38.
    Pareek, N. K., Patidar, V., & Sud, K. K. (2005). Cryptography using multiple one-dimensional chaotic maps. Communications in Nonlinear Science and Numerical Simulation, 10(7), 715–723.MathSciNetzbMATHGoogle Scholar
  39. 39.
    Pareek, N. K., Patidar, V., & Sud, K. K. (2003). Discrete chaotic cryptography using external key. Physics Letters A, 309(1), 75–82.MathSciNetzbMATHGoogle Scholar
  40. 40.
    Amigó, J. M., Kocarev, L., & Szczepanski, J. (2007). Theory and practice of chaotic cryptography. Physics Letters A, 366(3), 211–216.zbMATHGoogle Scholar
  41. 41.
    Mareca, M. P., & Bordel, B. (2017). Improving the complexity of the lorenz dynamics. Complexity, 2017, 320.MathSciNetzbMATHGoogle Scholar
  42. 42.
    Liao, T. L., & Tsai, S. H. (2000). Adaptive synchronization of chaotic systems and its application to secure communications. Chaos, Solitons and Fractals, 11(9), 1387–1396.zbMATHGoogle Scholar
  43. 43.
    Sivaprakasam, S., Shahverdiev, E. M., Spencer, P. S., & Shore, K. A. (2001). Experimental demonstration of anticipating synchronization in chaotic semiconductor lasers with optical feedback. Physical Review Letters, 87(15), 154101.Google Scholar
  44. 44.
    Kolumbán, G., Kennedy, M. P., & Chua, L. O. (1998). The role of synchronization in digital communications using chaos. II. Chaotic modulation and chaotic synchronization. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 45(11), 1129–1140.MathSciNetzbMATHGoogle Scholar
  45. 45.
    Cuomo, K. M., Oppenheim, A. V., & Strogatz, S. H. (1993). Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 40(10), 626–633.Google Scholar
  46. 46.
    Kocarev, L., Halle, K., Eckert, K., & Chua, L. (1992). Experimental demonstration of secure communications via chaotic synchronization. International Journal of Bifurcation and Chaos, 2, 709–713.zbMATHGoogle Scholar
  47. 47.
    Chua, L. O. (1992). The genesis of Chua’s circuit. San Diego: Electronics Research Laboratory, College of Engineering, University of California.Google Scholar
  48. 48.
    Cruz, J. M., & Chua, L. O. (1993). An IC chip of Chua’s circuit. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 40(10), 614–625.Google Scholar
  49. 49.
    Chua, L. O., Itoh, M., Kocarev, L., & Eckert, K. (1993). Chaos synchronization in Chua’s circuit. Journal of Circuits, Systems, and Computers, 3(01), 93–108.MathSciNetzbMATHGoogle Scholar
  50. 50.
    Chua, L. O., Kocarev, L., Eckert, K., & Itoh, M. (1992). Experimental chaos synchronization in Chua’s circuit. International Journal of Bifurcation and Chaos, 2(03), 705–708.zbMATHGoogle Scholar
  51. 51.
    Letti, S., Kurths, J., Osipov, G., Valladares, D. L., & Zhou, C. S. (2002). The synchronization of chaotic systems. Physics Reports, 366(1), 1–101.MathSciNetzbMATHGoogle Scholar
  52. 52.
    Wheeler, D. D. (1989). Problems with chaotic cryptosystems. Cryptologia, 13(3), 243–250.Google Scholar
  53. 53.
    Mishra, M. (2017). Review on chaotic ciphers and its analysis. Journal of Science and Engineering Education, 2, 30–34. (ISSN 2455-5061).Google Scholar
  54. 54.
    Peterson, R. L., Ziemer, R. E., & Borth, D. E. (1995). Introduction to spread-spectrum communications (Vol. 995). Upper Saddle River: Prentice Hall.Google Scholar
  55. 55.
    Kim, A. (2011). Photonic CDMA systems with security physical layers. IEEE Communications Letters, 15(1), 1–3.Google Scholar
  56. 56.
    Hasler, M. (1998). Synchronization of chaotic systems and transmission of information. International Journal of Bifurcation and Chaos, 8(04), 647–659.zbMATHGoogle Scholar
  57. 57.
    Morgül, Ö., & Feki, M. (1999). A chaotic masking scheme by using synchronized chaotic systems. Physics Letters A, 251(3), 169–176.Google Scholar
  58. 58.
    Dedieu, H., Kennedy, M. P., & Hasler, M. (1993). Chaos shift keying: Modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 40(10), 634–642.Google Scholar
  59. 59.
    Kolumbán, G., Kennedy, M. P., & Chua, L. O. (1998). The role of synchronization in digital communications using chaos. II. Chaotic modulation and chaotic synchronization. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 45(11), 1129–1140.MathSciNetzbMATHGoogle Scholar
  60. 60.
    Lorenz, E. N. J. (1963). Deterministic nonpenodic chaos. The Journal of the Atmospheric Sciences, 20, 167.Google Scholar
  61. 61.
    Lorenz, E. (1963). Chaos in meteorological forecast. Journal of the Atmospheric Sciences, 20, 130–144.Google Scholar
  62. 62.
    Chen, G., & Ueta, T. (1999). Yet another chaotic attractor. International Journal of Bifurcation and Chaos, 9(07), 1465–1466.MathSciNetzbMATHGoogle Scholar
  63. 63.
    Bai, E. W., & Lonngren, K. E. (1997). Synchronization of two Lorenz systems using active control. Chaos, Solitons and Fractals, 8(1), 51–58.zbMATHGoogle Scholar
  64. 64.
    Carroll, T. L., & Pecora, L. M. (1991). Synchronizing chaotic circuits. IEEE Transactions on Circuits and Systems, 38(4), 453–456.zbMATHGoogle Scholar
  65. 65.
    Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical Review Letters, 64(8), 821.MathSciNetzbMATHGoogle Scholar
  66. 66.
    Patidar, V., & Sud, K. K. (2006). Identical synchronization in chaotic jerk dynamical systems. Electronic Journal of Theoretical Physics, 3(11), 33.zbMATHGoogle Scholar
  67. 67.
    Pesin, Y. B. (1977). Characteristic Lyapunov exponents and smooth ergodic theory. Russian Mathematical Surveys, 32(4), 55–114.zbMATHGoogle Scholar
  68. 68.
    He, R., & Vaidya, P. G. (1992). Analysis and synthesis of synchronous periodic and chaotic systems. Physical Review A, 46(12), 7387.MathSciNetGoogle Scholar
  69. 69.
    Kyprianidis, I. M., Haralabidis, P., & Stouboulos, I. N. (1999). Dynamics and synchronization of a second-order nonlinear and nonautonomous electric circuit. In 3rd world multiconference on: circuits, systems, communications and computers, CSCC’99 (pp. 3241–3247).Google Scholar
  70. 70.
    Alcober, V., Mareca, P., & González, Y. G. (2001). Una Optimización en la Sincronización y Enmascaramiento con el circuito de Chua. In XXVIII Reunión Bienal de la Real Sociedad Española de Física. Simposio de Dinámica no-lineal, Sevilla (Spain).Google Scholar
  71. 71.
    Murali, K., Lakshamanan, M., & Chua, L. O. (1995). Synchronizing chaos in driven Chua’s circuit. International Journal of Bifurcation and Chaos, 05(2), 563.Google Scholar
  72. 72.
    Chua, L. O. (1998). CNN: A paradigm for complexity (Vol. 31). Singapore: World Scientific.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidad Politécnica de MadridMadridSpain

Personalised recommendations