Advertisement

Analog Integrated Circuits and Signal Processing

, Volume 98, Issue 1, pp 125–135 | Cite as

An adaptive-resolution signal-specific ADC for sensor-interface applications

  • Mahshid Nasserian
  • Ali PeiraviEmail author
  • Farshad Moradi
Article
  • 78 Downloads

Abstract

In this paper, a signal-specific analog-to-digital converter (ADC) with a new structure is proposed, in which the resolution of the ADC is adaptively adjusted by the activity of the input neural signal. The main advantages of the proposed technique for converting sparse and burst-like signals include (1) output data-rate reduction, and (2) power savings in ADC and its succeeding blocks. These benefits are obtained owing to the truncation of bits along in-active part of the signal. The extra blocks for realizing the proposed adaptive-variable resolution technique are fully-digital, which add minimum complexity and design overhead to the ADC. The proposed ADC has a suitable data compression capability at the expense of a tolerable degradation in quality of the reconstructed signal. The simulation results in a 180 nm CMOS technology show power savings of up to 39.5% and a compression ratio of 3.9×, as compared to the conventional structure.

Keywords

Data compression SAR ADC Signal-dependent behavior Nonlinear quantization Biomedical signal 

References

  1. 1.
    Chaudharya, U., Birbaumera, N., & Curado, M. R. (2015). Brain-machine interface (BMI) in paralysis. Annals of Physical and Rehabilitation Medicine, 58(1), 9–13.CrossRefGoogle Scholar
  2. 2.
    Zhang, Y., et al. (2013). A batteryless 19 µW MICS/ISM-band energy harvesting body sensor node SoC for ExG applications. IEEE Journal of Solid-State Circuits, 48(1), 199–213.CrossRefGoogle Scholar
  3. 3.
    Delnavaz, A., & Voix, J. (2014). Energy harvesting for in-ear devices using ear canal dynamic motion. IEEE Transactions on Industrial Electronics, 61(1), 583–590.CrossRefGoogle Scholar
  4. 4.
    Zaare, M., Sepehrian, H., & Maymandi-Nejad, M. (2013). A new non-uniform adaptive-sampling successive approximation ADC for biomedical sparse signals. Analog Integrated Circuit and Signal Processing, 74(2), 317–330.CrossRefGoogle Scholar
  5. 5.
    Yazicioglu, R. F., Kim, S., Torfs, T., Kim, H., & Hoof, C. V. (2011). A 30 μW analog signal processor ASIC for portable biopotential signal monitoring. IEEE Journal of Solid-State Circuits, 46(1), 209–223.CrossRefGoogle Scholar
  6. 6.
    Chen, F., Chandrakasan, A. P., & Stojanovic, V. M. (2012). Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors. IEEE Journal of Solid-State Circuits, 47(3), 744–756.CrossRefGoogle Scholar
  7. 7.
    Judy, M., Sodagar, A. M., Lotfi, R., & Sawan, M. (2014). Nonlinear signal-specific ADC for efficient neural recording in brain-machine interfaces. IEEE Transactions on Biomedical Circuits and Systems, 8(3), 371–381.CrossRefGoogle Scholar
  8. 8.
    Taherzadeh-Sani, M., Lotfi, R., & Nabki, F. (2014). A 10-bit 110 kS/s 1.16 μW SA-ADC with a hybrid differential/single-ended DAC in 180-nm CMOS for multichannel biomedical applications. IEEE Transactions on Circuits and SystemsII: Express Briefs, 61(8), 584–588.Google Scholar
  9. 9.
    Verma, N., Shoeb, A., Bohorquez, J., Dawson, J., Guttag, J., & Chandrakasan, A. P. (2010). A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE Journal of Solid-State Circuits, 45(4), 804–816.CrossRefGoogle Scholar
  10. 10.
    Lyu, Y.-F., Wu, C.-Y., Liu, L.-C. & Chen, W.-M. (2013). A low power 10 Bit 500 kS/s delta-modulated SAR ADC (DMSAR ADC) for implantable medical devices. In Proceedings of IEEE international symposium on circuits systems, (pp. 2046–2049).Google Scholar
  11. 11.
    Rahiminejad, E., Saberi, M., & Lotfi, R. (2016). A power-efficient signal-specific ADC for sensor-interface applications. IEEE Transactions on Circuits and Systems II: Express Briefs.Google Scholar
  12. 12.
    Tsividis, Y. (2010). Event-driven data acquisition and digital signal processing-a tutorial. IEEE Transactions on Circuits and Systems-II: Express Briefs, 57(8), 577–581.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ravanshad, N., Rezaee-Dehsorkh, H., Lotfi, R., & Lian, Y. (2014). Level-crossing based QRS-detection algorithm for wearable ECG sensors. IEEE Journal of Biomedical and Health Informatics, 18(1), 183–192.CrossRefGoogle Scholar
  14. 14.
    Li, Y., Zhao, D., & Serdijn, W. A. (2013). A sub-microwatt asynchronous level-crossing ADC for biomedical applications. IEEE Transactions on Biomedical Circuits and Systems, 7(2), 149–157.CrossRefGoogle Scholar
  15. 15.
    Lima Silva, V. M., & Cavalcanti Catunda, S. Y. (2017). Non-uniform sampling based ADC architecture using an adaptive level-crossing technique. In IEEE international instrumentation and measurement technology conference (I2MTC), (pp. 1-6).Google Scholar
  16. 16.
    Marisa, T. T., et al. (2017). Pseudo asynchronous level crossing ADC for ECG signal acquisition. IEEE Transactions on Biomedical Circuits and Systems, 11(2), 267–278.CrossRefGoogle Scholar
  17. 17.
    Tang, W., et al. (2013). Continuous time level crossing sampling ADC for bio-potential recording systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(6), 1407–1418.CrossRefGoogle Scholar
  18. 18.
    Kozmin, K., Johansson, J., & Delsing, J. (2009). Level-crossing ADC performance evaluation toward ultrasound application. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(8), 1708–1719.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Yongjia, L., Mansano, A. L., Yuan, Y., Zhao, D., & Serdijn, W. A. (2014). An ECG recording front-end with continuous-time level-crossing sampling. IEEE Transactions on Biomedical Circuits and Systems, 8(5), 626–635.CrossRefGoogle Scholar
  20. 20.
    Chen, S.-L., et al. (2017). A Power-efficient mixed-signal smart ADC design with adaptive resolution and variable sampling rate for low-power applications. IEEE Sensors Journal, 17(11), 3461–3469.CrossRefGoogle Scholar
  21. 21.
    Kumar, A. M., Veeramachaneni, S., & Srinivas, M. B. (2010). Towards realizing variable resolution analog to digital converters. In Asia pacific conference on postgraduate research in microelectronics and electronics (PrimeAsia).Google Scholar
  22. 22.
    Srinivasan, S. R., & Balsara, P. T. (2014). Energy-efficient sub-DAC merging scheme for variable resolution SAR ADC. Electronics Letters, 50(20), 1421–1423.CrossRefGoogle Scholar
  23. 23.
    Yip, M., & Chandrakasan, A. P. (2013). A resolution-reconfigurable 5-to-10-bit 0.4-to-1 V power scalable SAR ADC for sensor applications. IEEE Journal of Solid-State Circuits, 48(6), 1453–1464.CrossRefGoogle Scholar
  24. 24.
    Trakimas, M., & Sonkusale, S. R. (2011). An adaptive resolution asynchronous ADC architecture for data compression in energy constrained sensing applications. IEEE Transactions on Circuits and SystemsI: Regular Papers, 58(5), 921–934.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Le, H. P., Singh, J., Hiremath, L., Mallapur, V., & Stojcevski, A. (2005). Ultra-low-power variable-resolution successive approximation ADC for biomedical application. Electronics Letters, 41(11), 634–635.CrossRefGoogle Scholar
  26. 26.
    Kurchuk, M., & Tsividis, Y. (2010). Signal-dependent variable-resolution clockless A/D conversion with application to continuous-time digital signal processing. IEEE Transactions on Circuits and Systems-I: Regular Papers, 57(5).Google Scholar
  27. 27.
    Rezaee-Dehsorkh, H., Ravanshad, N., Lotfi, R., Mafinezhad, K., & Sodagar, A. M. (2011). Analysis and design of tunable amplifiers for implantable neural recording applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 1(4), 546–556.CrossRefGoogle Scholar
  28. 28.
    Zigel, Y., Cohen, A., & Katz, A. (2000). The weighted diagnostic distortion (WDD) measure for ECG signal compression. IEEE Transactions on Biomedical Engineering, 47(11), 1422–1430.CrossRefGoogle Scholar
  29. 29.
    MIT-BIH Arrhythmia database. [Online]. http://physionet.org/cgi-bin/atm/ATM.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mahshid Nasserian
    • 1
  • Ali Peiravi
    • 1
    Email author
  • Farshad Moradi
    • 2
  1. 1.Department of Electrical Engineering, School of EngineeringFerdowsi University of MashhadMashhadIran
  2. 2.Integrated Circuits and Electronics Lab, Department of EngineeringAarhus UniversityÅrhusDenmark

Personalised recommendations