Advertisement

Current inverting metamutator, its implementation with a new single active device and applications

  • Elham Minayi
  • I. Cem GöknarEmail author
Article

Abstract

A new kind of metamutator, namely “Current Inverting Metamutator”, its realizations using different types of active blocks and some of its applications like voltage-mode universal biquadratic filter with three input and one output terminals are presented. The proposed circuits can realize all standard filters, namely, low-pass, band-pass, high-pass, notch and all-pass without passive component matching conditions. The proposed circuit offers the features of using grounded capacitors and orthogonal controllability of angular frequency and quality factor. Then a novel realization of metamutator with one active device, additive and differential IC (AD-IC) is proposed and implemented with twelve transistors only. The metamutator with AD-IC has the advantages: (1) of creating new realizations of memristors, capacitance multipliers, inductor simulators, frequency dependent negative resistors which can be used to make IC active filters, (2) less is the number (only one) of active devices, less is the amount of disparity, (3) no need to match passive component values.

Keywords

Metamutator Memristors Analog circuit design Universal filter FDNR 

Notes

Acknowledgements

The authors sincerely thank all the reviewers and Prof. Shahram Minaei for their invaluable comments, their time and their efforts for improving the manuscript.

References

  1. 1.
    Chua, L. O. (1971). Memristor—The missing circuit element. IEEE Transaction on Circuit Theory, 18, 507–519.CrossRefGoogle Scholar
  2. 2.
    Sah, M Pd, Budhathoki, R. K., Yang, C., & Kim, H. (2014). Mutator-based meminductor emulator for circuit applications. Circuits, Systems and Signal Processing, 33, 2363–2383.CrossRefGoogle Scholar
  3. 3.
    Sheng, Y. D., Yan, L., Lu, H. H. C., & Hua, H. Y. (2014). Mutator for transferring a memristor emulator into meminductive and memcapacitive circuits. Chinese Physics B, 23, 070702.CrossRefGoogle Scholar
  4. 4.
    Pershin, Y. V., & Di Ventra, M. (2011). Emulation of floating memcapacitors and meminductors using current conveyors. Electronics Letters, 47(4), 243–244.CrossRefGoogle Scholar
  5. 5.
    Biolek, D., Biolková, V., & Kolka, Z. (2010). Mutators simulating memcapacitors and meminductors. In Proceedings of the Asia Pacific conference on circuits and systems (pp. 800–803), Malaysia.Google Scholar
  6. 6.
    Biolek, D., & Biolkova, V. (2010). Mutator for transforming memristor into memcapacitor. Electronics Letters, 46, 1428–1429.CrossRefGoogle Scholar
  7. 7.
    Yu, D., Liang, Y., Lu, H. H. C., & Chua, L. O. (2014). A universal mutator for transformations among memristor, memcapacitor, and meminductor. IEEE Transaction on Circuits and Systems II, 61, 758–762.CrossRefGoogle Scholar
  8. 8.
    Minaei, S., Göknar, I. C., Yıldız, M., & Yuce, E. (2014). Memstor, memstance simulations via a versatile 4-port built with new adder and subtractor circuits. International Journal of Electronics, 102, 911–931.CrossRefGoogle Scholar
  9. 9.
    Minayi, E. (2014). Applications of 4-port generalized mutators to memstor simulations. M. Sc: Thesis, Dogus University.Google Scholar
  10. 10.
    Göknar, I. C., & Minayi, E. (2014). Realizations of mutative 4-ports and their applications to memstor simulations. Analog Integrated Circuits and Signal Processing, 81, 29–42.CrossRefGoogle Scholar
  11. 11.
    Göknar, I. C., Yıldız, M., & Minaei, S. (2016). Metamutator applications: a quadrature MOS only oscillator and transconductance, transimpedance amplifiers. Analog Integrated Circuits and Signal Processing, 89, 801–808.CrossRefGoogle Scholar
  12. 12.
    Minayi, E., Göknar, I. C. (2017). CIM a current inverting metamutator and its application to universal filters among others. In Proceedings of the 40th international conference on telecommunications and signal processing, July 5–7, 2017, Barcelona, Spain.Google Scholar
  13. 13.
    Pini, A. Use monolithic universal active filter ICs to speed IoT analog front-end design. Digi-Key Electronics, Article Library, Nov. 15, 2017. Retrieved June 1, 2018 from https://www.digikey.sg/en/articles/techzone/2017/nov/use-monolithic-universal-active-filter-ics-to-speed-iotanalog-front-end-design.
  14. 14.
    Jin, J., & Wang, C. H. (2014). Current-mode universal filter and quadrature oscillator using CDTAs. Turkish Journal of Electrical Engineering & Computer Sciences, 22, 276–286.CrossRefGoogle Scholar
  15. 15.
    Kaçar, F., & Yeşil, A. (2010). Voltage mode universal filters employing single FDCCII. Analog Integrated Circuits and Signal Processing, 63, 137–142.CrossRefGoogle Scholar
  16. 16.
    Liu, S.-I., & Lee, J.-L. (1997). Voltage-mode universal filters using two current conveyors. International Journal of Electronics, 82, 145–150.CrossRefGoogle Scholar
  17. 17.
    Yüce, E., Minaei, S., & Cicekoglu, O. (2006). Novel floating inductance and FDNR simulators employing CCII+s. Journal of Circuits, Systems and Computers, 15, 75–81.CrossRefGoogle Scholar
  18. 18.
    Kacar, F., & Kuntman, H. (2009). Novel electronically tunable FDNR simulator employing single FDCCII. In European conference on circuit theory and design, Antalya, Turkey (pp. 21–24).Google Scholar
  19. 19.
    Minaei, S., Yuce, E., Cicekoglu, O., & Özcan, S. (2005). Inductance and FDNR simulator employing only two CCII+. In Applied electronics conference, Pilsen, Czech Republic (pp. 227–231).Google Scholar
  20. 20.
    Ayten, U. E., Sagbas, M., Herencsar, N., & Koton, J. (2011). Novel floating FDNR, inductor and capacitor simulator using CBTA. In 34th International conference on telecommunications and signal processing (TSP), Budapest, Hungary (pp. 312–316).Google Scholar
  21. 21.
    Prasad, D., & Srivastav, M. (2017). Novel Ms2 type FDNR simulation configuration with electronic control and grounded capacitances. In IEEE International conference on electronics, circuits and systems, Batumi, Georgia (pp. 160–164).Google Scholar
  22. 22.
    Surakampontorn, W., Riewruja, V., Kumwachara, K., & Dejhan, K. (1991). Accurate CMOS based current conveyors. IEEE Transactions on Instrumentation and Measurement, 40, 699–702.CrossRefGoogle Scholar
  23. 23.
    Minayi, E., & Göknar, I. C. (2017). Single active device metamutator; Its application to impedance simulation and in particular to FDNR. In International conference on electrical and electronics engineering, Bursa, Turkey (pp. 497–502).Google Scholar
  24. 24.
    Monsurrò, P., & Trifiletti, A. (2016). Synthesis of anti-aliasing filters for IF receivers. In International conference on mixed design of integrated circuits and systems, Lodz, Poland (pp. 239–242).Google Scholar
  25. 25.
    Fabre, A., Dayoub, F., Duruisseau, L., & Kamoun, M. (1994). High inputimpedance insensitive second-order filters implemented from currentconveyors. IEEE Transactions on Circuits and Systems I, 41, 918–921.CrossRefGoogle Scholar
  26. 26.
    Horng, J.-W. (2002). Voltage-mode universal biquadratic filter with one input and five outputs using OTAs. International Journal of Electronics, 89, 729–737.CrossRefGoogle Scholar
  27. 27.
    Minaei, S., Yuce, E., Herencsar, N., & Koton, J. (2012). SIFO voltage-mode universal filters employing TO-CCIIs. In International conference on telecommunications and signal processing, Prague, Czech Republic (pp. 359–362).Google Scholar
  28. 28.
    Horng, J.-W., Chan, T. H., & Li, T. Y. (2015). Tunable voltage-mode four inputs universal biquad using three DVCCs. In IEEE international conference on ASIC, Chengdu, China (pp. 1–4).Google Scholar
  29. 29.
    Paul, S. K., & Kushwaha, A. K. (2016). Biquadratic universal filter based on CCDDCCTA. In International conference on microelectronics, computing and communications, Durgapur, India (pp. 1–4).Google Scholar
  30. 30.
    Chen, H. P., & Yang, W. S. (2008). High-input and low-output impedance voltage-mode universal DDCC and FDCCII filter. IEICE Transactions on Electronics, 91(C), 666–669.CrossRefGoogle Scholar
  31. 31.
    Horng, J. W. (2008). High input impedance voltage-mode universal biquadratic filter with three inputs using DDCCs. Circuits, Systems, and Signal Processing, 27, 553–562.CrossRefGoogle Scholar
  32. 32.
    Chen, H. P. (2010). Versatile multifunction universal voltage-mode biquadratic filter. AEU International Journal of Electronics and Communications, 64, 983–987.CrossRefGoogle Scholar
  33. 33.
    Minaei, S., & Yuce, E. (2010). All-grounded passive elements voltage-mode DVCC-based universal filters. Circuits, Systems, and Signal Processing, 29, 295–309.CrossRefGoogle Scholar
  34. 34.
    Nikoloudis, S., & Psychalinos, C. (2010). Multiple input single output universal biquad filter with current feedback operational amplifiers. Circuits, Systems, and Signal Processing, 29, 1167–1180.CrossRefGoogle Scholar
  35. 35.
    Lee, C. N. (2011). Fully cascadable mixed-mode universal filter biquad using DDCCs and grounded passive components. Journal of Circuits, Systems, and Computers, 20, 607–620.CrossRefGoogle Scholar
  36. 36.
    Topaloglu, S., Sagbas, M., & Anday, F. (2012). Three-input single-output second-order filters using current-feedback amplifiers. AEU International Journal of Electronics and Communications, 66, 683–686.CrossRefGoogle Scholar
  37. 37.
    Horng, J. W., Hsu, C. H., & Tseng, C. Y. (2012). High input impedance voltage-mode universal biquadratic filters with three inputs using three CCs and grounding capacitors. Radioengineering, 21, 290–296.Google Scholar
  38. 38.
    Horng, J. W., Chiu, T. Y., & Jhao, Z. Y. (2012). Tunable versatile high input impedance voltage-mode universal biquadratic filter based on DDCCs. Radioengineering, 21, 1260–1268.Google Scholar
  39. 39.
    Ibrahim, M. A., Minaei, S., Yuce, E., Herencsar, N., & Koton, J. (2012). Lossy/lossless floating/grounded inductance simulation using one DDCC. Radioengineering, 21, 3–10.Google Scholar
  40. 40.
    Kacar, F. (2010). New lossless inductance simulators realization using a minimum active and passive components. Microelectronics Journal, 41, 109–113.CrossRefGoogle Scholar
  41. 41.
    Bruton, L. T. (1980). RC-active circuits: Theory and design. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ECE DepartmentDoğuş UniversityAcıbademTurkey
  2. 2.EE DepartmentIşık UniversityŞileTurkey

Personalised recommendations