Advertisement

Exploitation of the ambient noise for the structural health monitoring of bars and tubes

  • K. Hourany
  • F. Benmeddour
  • E. Moulin
  • J. Assaad
  • D. Callens
  • Y. Zaatar
Article
  • 64 Downloads

Abstract

Image processing is a very vast field that includes both IT and applied mathematics. It is a discipline that studies the improvement and transformations of digital images hence permitting the improvement of the quality of these images and the extraction of information. The comparison of digital images is a paramount issue that has been discussed in several researches because of its various applications especially in the field of control and surveillance such as the Structural Health Monitoring using acoustic waves. In this study we will present an experimental study conducted on a bar and a tube in order to show the constant possibility of performing a structural health monitoring in a medium by studying the ambient noise present therein. Finally, a comparison algorithm described in a previous work (Hourany et al. in Leban Sci J 17(2):177–192, 2016) will be validated in order to show the influence of the presence of a defect in the structure on the cross-correlation.

Keywords

Image processing Local minima Structural health monitoring Green’s function Frequency–time images Correlation Similarity rate 

Notes

Acknowledgements

The authors thank the Lebanese University for the financial support of this work. The authors thank the National Council for Scientific Research (Lebanese CNRS) for the financing of the thesis of Mr. Karl Hourany.

References

  1. 1.
    Abou Leyla, N., Moulin, E., Assaad, J., Grondel, S., & Poussot, P. (2008). Structural health monitoring using cross-correlation of an ambient noise field. The Journal of the Acoustical Society of America, 123(5), 3698.CrossRefGoogle Scholar
  2. 2.
    Smeulders, A. W. M., Worring, M., Santini, S., Gupta, A., & Jain, R. (2000). Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Itelligence, 22(12), 1349–1380.CrossRefGoogle Scholar
  3. 3.
    Baudrier, E., Millon, G., Nicolier, F., & Ruan, S. (2004). A new similarity measure using Hausdorff distance map. In ICIP ‘04. 2004 (Vol. 1, pp. 667–672). IEEE.Google Scholar
  4. 4.
    Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.CrossRefGoogle Scholar
  5. 5.
    Bigand, A., & Colot, O. (2010). Fuzzy filter based on interval-valued fuzzy sets for image filtering. Fuzzy Sets and Systems, 161(1), 96–117.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Huttenlocher, D. P., Klanderman, G. A., & Rucklidge, W. J. (1993). Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9), 850–863.CrossRefGoogle Scholar
  7. 7.
    Hourany, K., Benmeddour, F., Moulin, E., Assaad, J., & Zaatar, Y. (2016). Calculation of the similarity rate between images based on the local minima present therein. Lebanese Science Journal, 17(2), 177–192.CrossRefGoogle Scholar
  8. 8.
    Snieder, R., Sheiman, J., & Calvert, R. (2006). Equivalence of the virtual-source method and wave-field deconvolution in seismic interferometry. Physical Review E, 73(6), 066620.CrossRefGoogle Scholar
  9. 9.
    Shapiro, N. M., et al. (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715), 1615–1618.CrossRefGoogle Scholar
  10. 10.
    Shapiro, N. M., & Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31(7), 1-4.CrossRefGoogle Scholar
  11. 11.
    Sabra, K. G., & Dowling, D. R. (2004). Blind deconvolution in ocean waveguides using artificial time reversal. The Journal of the Acoustical Society of America, 116(1), 262–271.CrossRefGoogle Scholar
  12. 12.
    Sabra, K. G., Roux, P., & Kuperman, W. A. (2005). Time structure of the time-averaged ambient noise cross-correlation function in an oceanic waveguide. Journal of the Acoustical Society of America, 117(1), 164–174.CrossRefGoogle Scholar
  13. 13.
    Sabra, K. G., Roux, P., & Kuperman, W. (2005). Emergence rate of the time-domain Green’s function from the ambient noise cross-correlation function. The Journal of the Acoustical Society of America, 118(6), 3524–3531.CrossRefGoogle Scholar
  14. 14.
    Farrar, C., & James, G., III. (1997). System identification from ambient vibration measurements on a bridge. Journal of Sound and Vibration, 205(1), 1–18.CrossRefGoogle Scholar
  15. 15.
    Nagayama, T., et al. (2005). Structural identification of a nonproportionally damped system and its application to a full-scale suspension bridge. Journal of Structural Engineering, 131(10), 1536–1545.CrossRefGoogle Scholar
  16. 16.
    Snieder, R., & Şafak, E. (2006). Extracting the building response using seismic interferometry: Theory and application to the Millikan Library in Pasadena, California. Bulletin of the Seismological Society of America, 96(2), 586–598.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • K. Hourany
    • 1
    • 2
  • F. Benmeddour
    • 2
  • E. Moulin
    • 2
  • J. Assaad
    • 2
  • D. Callens
    • 2
  • Y. Zaatar
    • 1
  1. 1.Applied Physics Laboratory (LPA)Lebanese University - Faculty of SciencesJdeidetLebanon
  2. 2.UMR 8520 – IEMN, DOAEUniv. Valenciennes, CNRS, Univ. Lille, YNCREA, Centrale LilleValenciennesFrance

Personalised recommendations