Floating incremental/decremental flux-controlled memristor emulator circuit based on single VDTA

Article
  • 36 Downloads

Abstract

In this paper, new analog emulator circuits of flux-controlled memristor based on current voltage differencing transconductance amplifier (VDTA) and passive elements are proposed. They emulate both types of memductance, incremental and decremental, solely by interchanging the VDTA output terminals controlled by a simple switch. It uses only one VDTA, two resistors, one capacitor and one multiplier emulating floating memductance. Compared to other designed emulator circuits, they consist of fewer CMOS transistors and have wider output ranges. Theoretical derivations and related results are validated using SPICE simulations. The effectiveness of the proposed memristor circuits is verified by experimental results using commercially available integrated circuits, showing close agreement with theoretical and simulation results and easily reproducible at a low cost. The simulation test results and use of 0.18 μm CMOS technology have shown that the maximum frequency is 2 MHz. The circuit has also been tested for non-volatility features.The application of the proposed floating memristor emulator in designing an FM-to-AM converter confirms the functionality of the proposed circuit.

Keywords

Flux-controlled memristor Voltage differencing transconductance amplifier-VDTA Pinched hysteresis loop Four-quadrant multiplier Electronically controllable 

Notes

Acknowledgements

This work was supported by Ministry of Education and Science of the Republic of Serbia within the Projects 42009 and OI-172057.

References

  1. 1.
    Strukov, D. B., Sneider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453, 80–83.  https://doi.org/10.1038/nature06932.CrossRefGoogle Scholar
  2. 2.
    Chua, L. O. (1971). Memristor: the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–512.  https://doi.org/10.1109/tct.1971.1083337.CrossRefGoogle Scholar
  3. 3.
    Chua, L. O. (2011). Resistance switching memories are memristors. Applied Physics A: Materials Science & Processing, 102, 765–783.  https://doi.org/10.1007/s00339-011-6264-9.CrossRefMATHGoogle Scholar
  4. 4.
    Yu, D. S., Liang, Y., Chen, H., & Yu, H. H. H. (2013). Design of a practical memcapacitor emulator without grounded restriction. IEEE Transactions on Circuits and Systems II, 60(4), 207–211.  https://doi.org/10.1109/TCSII.2013.2240879.CrossRefGoogle Scholar
  5. 5.
    Kim, H., Sah, M. P., Yang, C., Cho, S., & Chua, L. O. (2012). Memristor emulator for memristor circuit applications. IEEE Transactions on Circuits and Systems I, 59(10), 2422–2429.  https://doi.org/10.1109/TCSI.2012.2188957.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Yunus, B., Abdullah, Y., & Firat, K. (2017). Memristor emulator with tunable characteristic and its experimental results. AEÜ-International Journal of Electronics and Communications, 81, 99–104.  https://doi.org/10.1016/j.aeue.2017.07.012.CrossRefGoogle Scholar
  7. 7.
    Biolek, Z., Biolek, D., & Biolkov, V. (2009). SPICE model of memristor with nonlinear dopant drift. Radioengineering, 18, 210–214.Google Scholar
  8. 8.
    Benderli, S., & Wey, T. A. (2009). On SPICE macromodelling of TiO2 memristors. Electronics Letters, 45, 377–379.  https://doi.org/10.1049/el.2009.3511.CrossRefGoogle Scholar
  9. 9.
    Pershin, Y. V., & Di Ventra, M. (2013). SPICE model of memristive devices with threshold. Radioengineering, 22, 485–489. arXiv:1204.2600v5.Google Scholar
  10. 10.
    Varghese, D., & Gabdhi, G. (2009). Memristor based high linear range differential pair. ICCCAS.  https://doi.org/10.1109/icccas.2009.5250373.Google Scholar
  11. 11.
    Sánchez-López, C., Mendoza-Lopez, J., Carrasco-AGuilar, M. A., & Muñiz-Montero, C. (2014). A floating analog memristor emulator circuit. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(5), 309–313.  https://doi.org/10.1109/TCSII.2014.2312806.CrossRefGoogle Scholar
  12. 12.
    Kim, H., Sah, M. P., Yang, C., Cho, S., & Chua, L. O. (2012). Memristor emulator for memristor circuit applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(10), 2422–2431.  https://doi.org/10.1109/tcsi.2012.2188957.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Sozen, H., & Cam, U. (2016). Electronically tunable memristor emulator circuit. Analog Integrated Circuits and Signal Processing, 89(3), 655–663.  https://doi.org/10.1007/s10470-016-0785-2.CrossRefGoogle Scholar
  14. 14.
    Yesil, A., Babacan, Y., & Kacar, F. (2014). A new DDCC based memristor emulator circuit and its applications. Microelectronics Journal, 45(3), 282–287.  https://doi.org/10.1016/j.mejo.2014.01.011.CrossRefGoogle Scholar
  15. 15.
    Yu, D., Iu, H. H. C., Fitch, A. L., & Liang, Y. (2014). A floating memristor emulator based relaxation oscillator. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(10), 2888–2896.  https://doi.org/10.1109/tcsi.2014.2333687.CrossRefGoogle Scholar
  16. 16.
    Yener, S., & Kuntman, H. (2012). Fully CMOS memristor based chaotic circuit. Radioengineering, 23(4), 1140–1149.Google Scholar
  17. 17.
    Minaei, S., Goknar, I. C., Yildiz, M., & Yuce, E. (2015). Memristor, memstance simulations via a versatile 4-port built with new adder and subtractor circuits. International Journal of Electronics, 102(6), 911–931.  https://doi.org/10.1080/00207217.2014.942890.CrossRefGoogle Scholar
  18. 18.
    Elwakil, A. S., Fouda, M. E., & Radwan, A. G. (2013). A simple model of double-loop hysteresis behaviour in memristive elements. IEEE Transactions on Circuits and Systems II: Express Briefs, 60(8), 487–491.  https://doi.org/10.1109/TCSII.2013.2268376.CrossRefGoogle Scholar
  19. 19.
    Sánchez-López, C., Carrasco-Aguilar, M. A., & Muñiz-Montero, C. (2015). A 16 Hz–160 kHz memristor emulator circuit. AEU-International Journal of Electronics and Communications, 69, 1208–1219.  https://doi.org/10.1016/j.aeue.2015.05.003.CrossRefGoogle Scholar
  20. 20.
    Sánchez-López, C., & Aguila-Cuapio, L. E. (2017). A 860 kHz grounded memristor emulator circuit. AEU-International Journal of Electronics and Communications, 73, 23–33.  https://doi.org/10.1016/j.aeue.2016.12.015.CrossRefGoogle Scholar
  21. 21.
    Abuelma’atti, M. T., & Khalifa, Z. J. (2014). A new memristor emulator and its application in digital modulation. Analog Integrated Circuits and Signal Processing, 80(3), 577–584.  https://doi.org/10.1007/s10470-014-0364-3.CrossRefGoogle Scholar
  22. 22.
    Abuelma’atti, M. T., & Khalifa, Z. J. (2015). A continuous-level memristor emulator and its application in a multivibrator circuit. AEU-International Journal of Electronics and Communications, 69(4), 771–775.  https://doi.org/10.1016/j.aeue.2014.12.011.CrossRefGoogle Scholar
  23. 23.
    Alharbi, A. G., Fouda, M. E., Khalifa, Z. J., Chowdhury, M. H. (2016). Simple generic memristor emulator for voltage-controlled models. In Proceedings of 2016 IEEE 59th international midwest symposium on circuits and systems (MWSCAS), 16–19 October, Abu Dhabi, UAE, pp. 1–4.  https://doi.org/10.1109/mwscas.2016.7869947.
  24. 24.
    Kumngern, M. (2015).A floating memristor emulator circuit using operational transconductance amplifiers. In IEEE international conference on electron devices and solid-state circuits (EDSSC), pp. 679–682.  https://doi.org/10.1109/edssc.2015.7285207.
  25. 25.
    Cam, Z. G., & Sedef, H. (2017). A new floating memristance simulator circuit based on second generation current conveyor. Journal of Circuits, Systems and Computers, 26(2), 1–15.  https://doi.org/10.1142/s0218126617500293.CrossRefGoogle Scholar
  26. 26.
    Rajeev Kumar, R., Niranjan, R., Nidhi, B., & Fabian, K. (2017). Single DVCCTA based high frequency incremental/decremental memristor emulator and its application. AEÜ-International Journal of Electronics and Communications, 82, 177–190.  https://doi.org/10.1016/j.aeue.2017.07.039.CrossRefGoogle Scholar
  27. 27.
    Umut, E. A., Shahram, M., & Mehmet, S. (2017). Memristor emulator circuits using single CBTA. AEÜ-International Journal of Electronics and Communications, 82, 109–118.  https://doi.org/10.1016/j.aeue.2017.08.008.CrossRefGoogle Scholar
  28. 28.
    Han, B., Ning, W., Huagan, W., Zhe, S., & Bocheng, B. (2018). Bi-stability in an improved memristor-based third-order Wien-Bridge oscillator. IETE Technical Review.  https://doi.org/10.1080/02564602.2017.1422395.Google Scholar
  29. 29.
    Yunus, B., Abdullah, Y., & Firat, K. (2017). Memristor emulator with tunable characteristic and its experimental results. AEÜ-International Journal of Electronics and Communications, 81, 99–104.  https://doi.org/10.1016/j.aeue.2017.07.012.CrossRefGoogle Scholar
  30. 30.
    Rajeev, K. R., Nishtha, R., Ratnadeep, P., Sajal, K. P., & Gaurav, K. (2017). Single CCTA based high frequency floating and grounded type of incremental/decremental memristor emulator and its application. Microelectronics Journal, 60, 119–128.  https://doi.org/10.1016/j.mejo.2016.12.004.CrossRefGoogle Scholar
  31. 31.
    Yunus, B., & Fırat, K. (2017). Memristor emulator with spike-timing-dependent-plasticity. AEÜ-International Journal of Electronics and Communications, 73, 16–22.  https://doi.org/10.1016/j.aeue.2016.12.025.CrossRefGoogle Scholar
  32. 32.
    Babacan, Y., & Kacar, F. (2017). Floating memristor emulator with subthreshold region. Analog Integrated Circuits and Signal Processing, 90, 471–475.  https://doi.org/10.1007/s10470-016-0888-9.CrossRefGoogle Scholar
  33. 33.
    Abuelma’atti, M. T., & Khalifa, Z. J. (2016). A new floating memristor emulator and its application in frequency-to-voltage conversion. Analog Integrated Circuits and Signal Processing, 86, 141–147.  https://doi.org/10.1007/s10470-015-0660-6.CrossRefGoogle Scholar
  34. 34.
    Sozen, H., & Cam, U. (2016). Electronically tunable memristor emulator circuit. Analog Integrated Circuits and Signal Processing, 89, 655–663.  https://doi.org/10.1007/s10470-016-0785-2.CrossRefGoogle Scholar
  35. 35.
    Toumazou, C., Lidgey, F. J., & Haigh, D. (1990). Analog IC design: The current-mode approach. Exeter, UK: Short Run Press.  https://doi.org/10.1049/PBCS002E.Google Scholar
  36. 36.
    Pershin, Y. V., & Ventra, M. D. (2010). Memristive circuits simulate memcapacitors and meminductors. Electronics Letters, 46(7), 517–518.  https://doi.org/10.1049/el.2010.2830.CrossRefGoogle Scholar
  37. 37.
    Nguyen, V. H., Sohn, K. Y., & Song, H. (2016). On-printed circuit board emulator with controllability of pinched hysteresis loop for nanoscale TiO2 thin-film memristor device. Journal of Computational Electronics, 15, 993–1002.  https://doi.org/10.1007/s10825-016-0862-x.CrossRefGoogle Scholar
  38. 38.
    Jetsdaporn, S., & Worapong, T. (2014). Compact VDTA-based current-mode electronically tunable universal filters using grounded capacitors. Microelectronics Journal, 45, 613–618.  https://doi.org/10.1016/j.mejo.2014.04.008.CrossRefGoogle Scholar
  39. 39.
    Yesil, A., Kacar, F., & Kuntman, H. (2011). New simple CMOS realization of voltage differencing transconductance amplifier and its RF filter application. Radioengineering, 20(3), 632–637.Google Scholar
  40. 40.
    Arbel, A. F., & Goldminz, L. (1992). Output stage for current-mode feedback amplifiers, theory and applications. Analog Integrated Circuits and Signal Processing, 3, 243–255.  https://doi.org/10.1007/BF00276637.CrossRefGoogle Scholar
  41. 41.
    Boonchu, B., Surakampontorn, W. (2005). CMOS class-AB voltage-mode multiplier. In Proceedings of ISCIT2005, pp. 1489–1492.  https://doi.org/10.1109/iscit.2005.1567165.
  42. 42.
    Boonchu, B., Surakampton, W. (2002). Voltage-mode CMOS squarer/multiplier circuit. In The 2002 international technical conference on circuits/systems, computers and communications, pp. 646–649.Google Scholar
  43. 43.
    Srivastava, V. M., & Singh, G. (2014). MOSFET technologies for double-pole four-throw radio-frequency switch. Analog Integrated Circuits and Signal Processing, 122, 23–43.  https://doi.org/10.1007/978-3-319-01165-3_2.CrossRefGoogle Scholar
  44. 44.
    Alaybeyoglu, E., & Kuntman, H. (2016). CMOS implementations of VDTA based frequency agile filters for encrypted communications. Analog Integrated Circuits and Signal Processing, 89, 675–684.  https://doi.org/10.1007/s10470-016-0760-y.CrossRefGoogle Scholar
  45. 45.
    Evaluation of measurement data. (2008). Supplement 1 to the “Guide to the expression of uncertainty in measurement”—Propagation of distributions using a Monte Carlo method, BIPM.Google Scholar
  46. 46.
    Herencsar, N., Sotner, R., Koton, J., Misurec, J., & Vrba, K. (2013). New compact VM four-phase oscillator employing only single Z-copy VDTA and all grounded passive elements. Elektronika Ir Elektrotechnika, 19(10), 87–90.  https://doi.org/10.5755/j01.eee.19.10.5900.CrossRefGoogle Scholar
  47. 47.
    Adhikari, S. P., Sah, M. P., Kim, H., & Chua, L. O. (2013). Three fingerprint of memristor. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(11), 3008–3021.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Technical SciencesUniversity of KragujevacČačakSerbia

Personalised recommendations