The use of mechanical sensitivity model to enhance capacitive sensor characteristics

  • Zine GhemariEmail author
  • Salah Saad


Vibration analysis is a conditional preventive maintenance technique that measures the level of vibratory motion by a measuring chain containing a vibration sensor, an amplifier and an FFT analyzer. In the present work, the vibratory analysis technique is improved on the basis of vibration sensor (capacitive sensor) developments. A suitable capacitive sensor mathematical model is developed thus; a formula of its mechanical sensitivity according to the capacitance is extracted. Experimental and simulation tests are conducted to validate the developed model. A damping rate equal to 0.68 is chosen to reduce the measurement error to a value not exceeding 0.5% in order to increase the accuracy to a value greater than or equal to 99.5%, consequently the sensor mechanical sensitivity is optimized. Finally, the simulation of the developed model is carried out for two capacitive sensors. The first sensor is used in the experimental tests and has a damping rate equal to 0.64 and the second is the sensor proposed in this work, having a damping rate equal to 0.68. The comparison of the obtained results has showed that the damping rate of 0.68 has greatly improved the capacitive sensor performances.


Capacitance Measurement Error Sensor Vibration Displacement Frequency 



The authors like to thank the Algerian general direction of research (DGRSDT) for their financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Benmessaoud, M. (2014). « Conception et Modélisation des MEMS : Application aux Accéléromètres » Thèse de doctorat en électronique, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, Décembre 2014.Google Scholar
  2. 2.
    Wang, J., et al. (2015). Design and analysis of a high sensitivity FBG accelerometer based on local strain amplification. IEEE Sensors Journal, 15(10), 5442–5449.CrossRefGoogle Scholar
  3. 3.
    Zabit, U., et al. (2013). Design and analysis of an embedded accelerometer coupled self-mixing laser displacement sensor. IEEE Sensors Journal, 13(6), 2200–2207.CrossRefGoogle Scholar
  4. 4.
    Bruant, I., Gallimard, L., & Nikoukar, S. (2011). Optimization of piezoelectric sensors location and number using a genetic algorithm. Journal Mechanics of Advanced Materials and Structures, 18(7), 469–475.CrossRefGoogle Scholar
  5. 5.
    Xu, Y., Zhao, L., & Jiang, Z. (2014). A novel piezoresistive accelerometer featuring in-plane vibration. In 2014 IEEE International conference on electron devices and solid-state circuits (EDSSC), 18–20 June 2014, Chengdu, China.Google Scholar
  6. 6.
    Shoaib, M., Hisham, N., Basheer, N., & Tariq, M. (2016). Frequency and displacement analysis of electrostatic cantilever-based MEMS sensor. Analog Integrated Circuits and Signal Processing, 88(1), 1–11.CrossRefGoogle Scholar
  7. 7.
    Cagatay, E., Köhler, P., Lugli, P., & Abdellah, A. (2015). Flexible capacitive tactile sensors based on carbon nanotube thin films. IEEE Sensors Journal, 15(6), 3225–3233.CrossRefGoogle Scholar
  8. 8.
    Ali, A., Khan, A., Karimov, K.-S., Ali, A., & Khan, A.-D. (2018). Pressure sensitive sensors based on carbon nanotubes, graphene, and its composites. Journal of Nanomaterials, 2018, Article ID 9592610.Google Scholar
  9. 9.
    ALLIANTECH S.A.S. (2016). Technologie des capteurs capacitifs miniatures silicon designs.
  10. 10.
    Ghemari, Z., & Saad, S. (2018). Piezoresistive accelerometer mathematical model development with experimental validation. IEEE Sensors Journal, 18(7), 2690–2696.CrossRefGoogle Scholar
  11. 11.
    Reguieg, S. K., Ghemari, Z., Benslimane, T., & Saad, S. (2019). Modeling and enhancement of piezoelectric accelerometer relative sensitivity. SensingImaging, 20(1), 1–14.Google Scholar
  12. 12.
    Gorintin, L. (2011). « Etude et réalisation de transistors à nanotubes de carbone pour la détection sélective de gaz » Doctoral thesis on Micro and Nanotechnologies/Microelectronics, Ecole Polytechnique X, 2011, France.Google Scholar
  13. 13.
    Bakhoum, E. G. (2011). Ultrahigh-sensitivity pressure and vibration sensor. IEEE Sensors Journal, 11(12), 3288–3294.CrossRefGoogle Scholar
  14. 14.
    Tse, C. (2013). Design of a power scalable capacitive MEMS accelerometer front end. Master’s Thesis degree of Applied Science Graduate, Department of Electrical and Computer Engineering, University of Toronto.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentMohamed Boudiaf University of M’silaM’silaAlgeria
  2. 2.LSELMBadji Mokhtar UniversityAnnabaAlgeria

Personalised recommendations