Advertisement

Algebra and Logic

, Volume 58, Issue 3, pp 288–293 | Cite as

Generating Sets of Involutions of Finite Simple Groups

  • Ya. N. NuzhinEmail author
Article
  • 2 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Unsolved Problems in Group Theory, The Kourovka Notebook, No. 19, Institute of Mathematics SO RAN, Novosibirsk (2018); http://www.math.nsc.ru/alglog/19tkt.pdf.
  2. 2.
    G. Malle, J. Saxl, and T. Weigel, “Generation of classical groups,” Geom. Ded., 49, No. 1, 85-116 (1994).MathSciNetCrossRefGoogle Scholar
  3. 3.
    J. M. Ward, Generation of simple groups by conjugate involutions, PhD Thesis, Queen Mary College, Univ. London (2009).Google Scholar
  4. 4.
    Ya. N. Nuzhin, “Generating triples of involutions for alternating groups,” Mat. Zametki, 51, No. 4, 91-95 (1992).MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ya. N. Nuzhin, “Generating triples of involutions for Chevalley groups over a finite field of characteristic 2,” Algebra and Logic, 29, No. 2, 134-143 (1990).MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ya. N. Nuzhin, “Generating triples of involutions for Lie-type groups over a finite field of odd characteristic. I,” Algebra and Logic, 36, No. 1, 46-59 (1997).MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ya. N. Nuzhin, “Generating triples of involutions for Lie-type groups over a finite field of odd characteristic. II,” Algebra and Logic, 36, No. 4, 245-256 (1997).MathSciNetCrossRefGoogle Scholar
  8. 8.
    V. D. Mazurov, “On generation of sporadic simple groups by three involutions two of which commute,” Sib. Math. J., 44, No. 1, 160-164 (2003).MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ya. N. Nuzhin, “Generating triples of involutions of groups of Lie type of rank 2 over finite fields,” Algebra and Logic, 58, No. 1, 59-76 (2019).MathSciNetCrossRefGoogle Scholar
  10. 10.
    J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford (1985).Google Scholar
  11. 11.
    F. Lübeck and G. Malle, “(2, 3)-generation of exceptional groups,” J. London Math. Soc., II. Ser., 59, No. 1, 109-122 (1999).Google Scholar
  12. 12.
    M. W. Liebeck and A. Shalev, “Classical groups, probabilistic methods, and the (2, 3)- generation problem,” Ann. Math. (2), 144, No. 1, 77-125 (1996).MathSciNetCrossRefGoogle Scholar
  13. 13.
    M. A. Pellegrini, “The (2, 3)-generation of the special linear groups over finite fields,” Bull. Aust. Math. Soc., 95, No. 1, 48-53 (2017).MathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Vsemirnov, “On (2, 3)-generated groups,” Int. Conf. Group Theory in Honor of the 70th Birthday of Prof. V. D. Mazurov (July 16-20, 2013, Novosibirsk); http://math.nsc.ru/conference/groups2013/slides/MaximVsemirnov_slides.pdf.
  15. 15.
    M. A. Pellegrini, M. Prandelli, and M. C. Tamburini Bellani, “The (2, 3)-generation of the special unitary groups of dimension 6,” J. Alg. Appl., 15, No. 9 (2016), Article ID 1650171.MathSciNetCrossRefGoogle Scholar
  16. 16.
    A. V. Timofeenko, “On generating triples of involutions of large sporadic groups,” Diskr. Mat., 15, No. 2, 103-112 (2003).Google Scholar
  17. 17.
    L. L. Scott, “Matrices and cohomology,” Ann. Math. (2), 105, 473-492 (1977).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations