Algebra and Logic

, Volume 58, Issue 3, pp 249–253 | Cite as

Counterexamples to Two Conjectures in the Kourovka Notebook

  • S. V. SkresanovEmail author

Here we give counterexamples to two conjectures in The Kourovka Notebook, Questions 12.78 and 19.67;∼alglog/19tkt.pdf. The first conjecture concerns character theory of finite groups, and the second one regards permutation group theory.


finite group character permutation group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Unsolved Problems in Group Theory, The Kourovka Notebook, No. 19, Institute of Mathematics SO RAN, Novosibirsk (2018);
  2. 2.
    The GAP Group, GAP—Groups, Algorithms, Programming—A System for Computational Discrete Algebra, vers. 4.10.2 (2019);
  3. 3.
    I. M. Isaacs, Character Theory of Finite Groups, Corr. repr. of the 1976 orig., Dover Publ., New York, NY (1994).Google Scholar
  4. 4.
    M. Larsen and A. Shalev, “Characters of symmetric groups: Sharp bounds and applications,” Invent. Math., 174, No. 3, 645-687 (2008).MathSciNetCrossRefGoogle Scholar
  5. 5.
    W. Fulton and J. Harris, Representation Theory: A First Course, Grad. Texts Math., 129, Springer, New York (1991).Google Scholar
  6. 6.
    P. J. Cameron, “Finite permutation groups and finite simple groups,” Bull. London Math. Soc., 13, No. 1, 1-22 (1981).MathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Evdokimov and I. Ponomarenko, “Two-closure of odd permutation group in polynomial time,” Discr. Math., 235, Nos. 1-3, 221-232 (2001).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations