Algebra and Logic

, Volume 58, Issue 3, pp 214–223 | Cite as

ω-Independent Bases for Quasivarieites of Torsion-Free Groups

  • A. I. BudkinEmail author

It is proved that there exists a set ℛ of quasivarieties of torsion-free groups which (a) have an ω-independent basis of quasi-identities in the class 𝒦0 of torsion-free groups, (b) do not have an independent basis of quasi-identities in 𝒦0, and (c) the intersection of all quasivarieties in ℛ has an independent quasi-identity basis in 𝒦0. The collection of such sets ℛ has the cardinality of the continuum.


quasivariety quasi-identity independent basis ω-independent basis torsion-free group. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Mal’tsev, “Universally axiomatizable subclasses of locally finite classes of models,” Sib. Math. J., 8, No. 5, 764-770 (1967).MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Tarski, “Equational logic and equational theories of algebras,” in Contributions to Mathematical Logic (Proc. Logic Colloq., Hannover, 1966), North Holland, Amsterdam (1968), pp. 275-288.Google Scholar
  3. 3.
    A. I. Budkin, “Independent axiomatizability of quasivarieties of groups,” Mat. Zametki, 31, No. 6, 817-826 (1982).MathSciNetzbMATHGoogle Scholar
  4. 4.
    A. I. Budkin, “Independent axiomatizability of quasivarieties of generalized solvable groups,” Algebra and Logic, 25, No. 3, 155-166 (1986).MathSciNetCrossRefGoogle Scholar
  5. 5.
    A. I. Budkin, “Independent axiomatizability of quasivarieties of solvable groups,” Algebra and Logic, 30, No. 2, 81-100 (1991).MathSciNetCrossRefGoogle Scholar
  6. 6.
    N. Ya. Medvedev, “Quasivarieties of l-groups and groups,” Sib. Math. J., 26, No. 5, 717-723 (1985).MathSciNetCrossRefGoogle Scholar
  7. 7.
    A. I. Budkin, “Quasivarieties of groups without coverings,” Mat. Zametki, 37, No. 5, 609-616 (1985).MathSciNetzbMATHGoogle Scholar
  8. 8.
    A. N. Fedorov, “Quasi-identities of free 2-nilpotent group,” Mat. Zametki, 40, No. 5, 590-597 (1986).MathSciNetzbMATHGoogle Scholar
  9. 9.
    A. N. Fedorov, “Subquasivarieties of nilpotent minimal non-Abelian group varieties,” Sib. Math. J., 21, No. 6, 840-850 (1980).CrossRefGoogle Scholar
  10. 10.
    V. I. Tumanov, “Finite lattices having no independent basis of quasiidentities,” Mat. Zametki, 36, No. 5, 625-634 (1984).MathSciNetzbMATHGoogle Scholar
  11. 11.
    V. K. Kartashov, “Quasivarieties of unars,” Mat. Zametki, 27, No. 1, 7-20 (1980).MathSciNetzbMATHGoogle Scholar
  12. 12.
    S. V. Sizyǐ, “Quasivarieties of graphs,” Sib. Math. J., 35, No. 4, 783-794 (1994).MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. V. Kravchenko, “Complexity of quasivariety lattices for varieties of unary algebras. II,” Sib. El. Mat. Izv., 13, 388-394 (2016);
  14. 14.
    A. Basheyeva, A. Nurakunov, M. Schwidefsky, and A. Zamojska-Dzienio, “Lattices of subclasses. III,” Sib. El. Mat. Izv., 14, 252-263 (2017);
  15. 15.
    A. V. Kravchenko and A. V. Yakovlev, “Quasivarieties of graphs and independent axiomatizability,” Mat. Trudy, 20, No. 2, 80-89 (2017).zbMATHGoogle Scholar
  16. 16.
    A. V. Kartashova, “Antivarieties of unars,” Algebra and Logic, 50, No. 4, 357-364 (2011).MathSciNetCrossRefGoogle Scholar
  17. 17.
    A. I. Budkin, “On the independent axiomatizability of quasimanifolds of universal algebras,” Mat. Zametki, 56, No. 4, 28-37 (1994).MathSciNetGoogle Scholar
  18. 18.
    A. O. Basheyeva and A. V. Yakovlev, “On ω-independent bases for quasi-identities,” Sib. El. Mat. Izv., 14, 838-847 (2017);
  19. 19.
    V. A. Gorbunov, Algebraic Theory of Quasivarieties, Sib. School Alg. Log. [in Russian], Nauch. Kniga, Novosibirsk (1999).Google Scholar
  20. 20.
    V. A. Gorbunov, “Covers in lattices of quasivarieties and independent axiomatizability,” Algebra and Logic, 16, No. 5, 340-369 (1977).CrossRefGoogle Scholar
  21. 21.
    A. V. Kravchenko, A. M. Nurakunov, and M. V. Schwidefsky, “Quasi-equational bases of differential groupoids and unary algebras,” Sib. El. Mat. Izv., 14, 1330-1337 (2017);
  22. 22.
    A. I. Budkin and V. A. Gorbunov, “Quasivarieties of algebraic systems,” Algebra and Logic, 14, No. 2, 73-84 (1975).MathSciNetCrossRefGoogle Scholar
  23. 23.
    A. I. Mal’tsev, Algebraic Systems [in Russian], Nauka, Moscow (1970).Google Scholar
  24. 24.
    A. I. Budkin, “Quasi-identities in a free group,” Algebra and Logic, 15, No. 1, 25-33 (1976).MathSciNetCrossRefGoogle Scholar
  25. 25.
    H. B. Griffiths, “The fundamental group of a surface, and a theorem of Schreier,” Acta Math., 110, No. 1, 1-17 (1963).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Altai State UniversityBarnaulRussia

Personalised recommendations