Advertisement

Algebra and Logic

, Volume 58, Issue 1, pp 36–47 | Cite as

Hochschild Cohomologies of the Associative Conformal Algebra Cend1,x

  • R. A. KozlovEmail author
Article
  • 1 Downloads

It is stated that the second Hochshild cohomology group of the associative conformal algebra Cend1,x with values in any bimodule is trivial. Consequently, the given algebra splits off in every extension with nilpotent kernel.

Keywords

associative conformal algebra split-off radical Hochshild cohomologies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, “Infinite conformal symmetry in two-dimensional quantum field theory,” Nucl. Phys., 241, No. 2, 333-380 (1984).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    R. E. Borcherds, “Vertex algebras, Kac–Moody algebras, and the Monster,” Proc. Nat. Acad. Sc. USA, 83, 3068-3071 (1986).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    V. G. Kac, Vertex Algebras for Beginners, Univ. Lect. Ser., 10, Am. Math. Soc., Providence, RI (1998).Google Scholar
  4. 4.
    A. D’Andrea and V. G. Kac, “Structure theory of finite conformal algebras,” Sel. Math., New Ser., 4, No. 3, 377-418 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    S.-J. Cheng and V. G. Kac, “Conformal modules,” Asian J. Math., 1, No. 1, 181-193 (1997); Erratum, 2, No. 1, 153-156 (1998).Google Scholar
  6. 6.
    E. Zelmanov, “On the structure of conformal algebras,” Contemp. Math., 264, Am. Math. Soc., Providence, RI (2000), pp. 139-153.Google Scholar
  7. 7.
    E. I. Zel’manov, “Idempotents in conformal algebras,” Proc. 3d Int. Alg. Conf. (Tainan, Taiwan, June 16-July 1, 2002), Kluwer, Dordrecht (2003), pp. 257-266.Google Scholar
  8. 8.
    B. Bakalov, V. G. Kac, and A. Voronov, “Cohomology of conformal algebras,” Comm. Math. Phys., 200, No. 3, 561-598 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    P. S. Kolesnikov, “Associative conformal algebras with finite faithful representation,” Adv. Math., 202, No. 2, 602-637 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    P. Kolesnikov, “On the Wedderburn principal theorem in conformal algebras,” J. Alg. Appl., 6, No. 1, 119-134 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    I. A. Dolguntseva, “The Hochschild cohomology for associative conformal algebras,” Algebra and Logic, 46, No. 6, 373-384 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    I. A. Dolguntseva, “Triviality of the second cohomology group of the conformal algebras Cendn and Curn,” St. Petersburg Math. J., 21, No. 1, 53-63 (2009).MathSciNetCrossRefGoogle Scholar
  13. 13.
    B. Bakalov, A. D’Andrea, and V. G. Kac, “Theory of finite pseudoalgebras,” Adv. Math., 162, No. 1, 1-140 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    L. A. Bokut’, Y. Fong, W.-F. Ke, and P. S. Kolesnikov, “Gröbner–Shirshov bases in algebra and conformal algebras,” Fund. Prikl. Mat., 6, No. 3, 669-706 (2000).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations