Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Algebraic and Geometric Classification of Nilpotent Assosymmetric Algebras

Abstract

We present algebraic and geometric classifications of the 4-dimensional complex nilpotent assosymmetric algebras.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Abdelwahab, H., Calderón, A.J., Kaygorodov, I.: The algebraic and geometric classification of nilpotent binary Lie algebras. International Journal of Algebra and Computation 29(6), 1113–1129 (2019)

  2. 2.

    Adashev, J., Camacho, L., Omirov, B.: Central extensions of null-filiform and naturally graded filiform non-Lie Leibniz algebras. Journal of Algebra 479, 461–486 (2017)

  3. 3.

    Alvarez, M.A.: The variety of 7-dimensional 2-step nilpotent Lie algebras. Symmetry 10(1), 26 (2018)

  4. 4.

    Alvarez, M.A., Hernández, I., Kaygorodov, I.: Degenerations of Jordan superalgebras. Bulletin of the Malaysian Mathematical Sciences Society 42(6), 3289–3301 (2019)

  5. 5.

    Beneš, T., Burde, D.: Classification of orbit closures in the variety of three-dimensional Novikov algebras. Journal of Algebra and its Applications 13, 2,1350081,33 (2014)

  6. 6.

    Boers, A.: On assosymmetric rings. Indag. Math. 5(1), 9–27 (1994)

  7. 7.

    Burde, D., Steinhoff, C.: Classification of orbit closures of 4–dimensional complex Lie algebras. Journal of Algebra 214(2), 729–739 (1999)

  8. 8.

    Calderón Martín, A., Fernández Ouaridi, A., Kaygorodov, I.: The classification of n-dimensional anticommutative algebras with (n − 3)-dimensional annihilator. Communications in Algebra 47(1), 173–181 (2019)

  9. 9.

    Calderón Martín, A., Fernández Ouaridi, A., Kaygorodov, I.: The classification of 2-dimensional rigid algebras, Linear and Multilinear Algebra. https://doi.org/10.1080/03081087.2018.1519009 (2018)

  10. 10.

    Calderón Martín, A., Fernández Ouaridi, A., Kaygorodov, I.: The classification of bilinear maps with radical of codimension 2, (2018). arXiv:1806.07009

  11. 11.

    Camacho, L., Kaygorodov, I., Lopatkin, V., Salim, M.: The variety of dual mock-Lie algebras, Communications in Mathematics, to appear. arXiv:1910.01484

  12. 12.

    Cicalò, S., De Graaf, W., Schneider, C.: Six-dimensional nilpotent Lie algebras. Linear Algebra Appl. 436(1), 163–189 (2012)

  13. 13.

    Darijani, I., Usefi, H: The classification of 5-dimensional p-nilpotent restricted Lie algebras over perfect fields, I. Journal of Algebra 464, 97–140 (2016)

  14. 14.

    De Graaf, W.: Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2. Journal of Algebra 309(2), 640–653 (2007)

  15. 15.

    De Graaf, W.: Classification of nilpotent associative algebras of small dimension. International Journal of Algebra and Computation 28(1), 133–161 (2018)

  16. 16.

    Demir, I., Misra, K., Stitzinger, E.: On classification of four-dimensional nilpotent Leibniz algebras. Communications in Algebra 45(3), 1012–1018 (2017)

  17. 17.

    Dzhumadildaev, A.: Assosymmetric algebras under Jordan product. Communications in Algebra 46(1), 1532–4125 (2018)

  18. 18.

    Dzhumadildaev, A., Zhakhayev, B.: Free assosymmetric algebras as modules of groups. arXiv:1810.05254

  19. 19.

    Fernández Ouaridi, A., Kaygorodov, I., Khrypchenko, M., Volkov, Yu.: Degenerations of nilpotent algebras. arXiv:1905.05361

  20. 20.

    Gorshkov, I., Kaygorodov, I., Khrypchenko, M.: The algebraic classification of nilpotent Tortkara algebras. arXiv:1904.00845

  21. 21.

    Gorshkov, I., Kaygorodov, I., Khrypchenko, M.: The geometric classification of Tortkara algebras. Communications in Algebra 48(1), 204–209 (2020)

  22. 22.

    Gorshkov, I., Kaygorodov, I., Kytmanov, A., Salim, M: The variety of nilpotent Tortkara algebras. Journal of Siberian Federal University Mathematics & Physics 12(2), 173–184 (2019)

  23. 23.

    Gorshkov, I., Kaygorodov, I., Popov, Yu.: Degenerations of Jordan algebras and Marginal algebras, Algebra Colloquium, 2019, to appear

  24. 24.

    Grunewald, F., O’Halloran, J.: Varieties of nilpotent Lie algebras of dimension less than six. Journal of Algebra 112, 315–325 (1988)

  25. 25.

    Grunewald, F., O’Halloran, J.: A Characterization of orbit closure and applications. Journal of Algebra 116, 163–175 (1988)

  26. 26.

    Hegazi, A., Abdelwahab, H.: Classification of five-dimensional nilpotent Jordan algebras. Linear Algebra Appl. 494, 165–218 (2016)

  27. 27.

    Hegazi, A., Abdelwahab, H.: Is it possible to find for any \(n,m \in \mathbb {N}\) a Jordan algebra of nilpotency type (n, 1,m)?. Beitrage zur Algebra und Geometrie 57(4), 859–880 (2016)

  28. 28.

    Hegazi, A., Abdelwahab, H., Calderón Martín, A.: The classification of n-dimensional non-Lie Malcev algebras with (n − 4)-dimensional annihilator. Linear Algebra Appl. 505, 32–56 (2016)

  29. 29.

    Hegazi, A., Abdelwahab, H., Calderón Martín, A.: Classification of nilpotent Malcev algebras of small dimensions over arbitrary fields of characteristic not 2. Algebras and Representation Theory 21(1), 19–45 (2018)

  30. 30.

    Hentzel, I., Jacobs, D., Peresi, L.: A basis for free assosymmetric algebras. Journal of Algebra 183, 306–318 (1996)

  31. 31.

    Ismailov, N., Kaygorodov, I., Volkov, Yu.: The geometric classification of Leibniz algebras. International Journal of Mathematics 29, 5,1850035 (2018)

  32. 32.

    Ismailov, N., Kaygorodov, I., Volkov, Yu.: Degenerations of Leibniz and anticommutative algebras. Can. Math. Bull. 62(3), 539–549 (2019)

  33. 33.

    Karimjanov, I., Kaygorodov, I., Khudoyberdiyev, K: The algebraic and geometric classification of nilpotent Novikov algebras. J. Geom. Phys. 143, 11–21 (2019)

  34. 34.

    Karimjanov, I., Kaygorodov, I., Ladra, M.: Central extensions of filiform associative algebras, Linear and Multilinear Algebra. https://doi.org/10.1080/03081087.2019.1620674 (2019)

  35. 35.

    Kaygorodov, I., Khrypchenko, M., Popov, Yu.: The algebraic and geometric classification of nilpotent terminal algebras. arXiv:1909.00358

  36. 36.

    Kaygorodov, I., Lopes, S., Popov, Yu.: Degenerations of nilpotent associative commutative algebras, Communications in Algebra, to appear. https://doi.org/10.1080/00927872.2019.1691581

  37. 37.

    Kaygorodov, I., Paez-Guillán, P., Voronin, V.: The algebraic and geometric classification of nilpotent bicommutative algebras, Algebras and Representation Theory, to appear. https://doi.org/10.1007/s10468-019-09944-x

  38. 38.

    Kaygorodov, I., Popov, Yu., Pozhidaev, A., Volkov, Yu.: Degenerations of Zinbiel and nilpotent Leibniz algebras. Linear and Multilinear Algebra 66(4), 704–716 (2018)

  39. 39.

    Kaygorodov, I., Popov, Yu., Volkov, Yu.: Degenerations of binary-Lie and nilpotent Malcev algebras. Communications in Algebra 46(11), 4929–4941 (2018)

  40. 40.

    Kaygorodov, I., Volkov, Yu.: The variety of 2-dimensional algebras over an algebraically closed field. Can. J. Math. 71(4), 819–842 (2019)

  41. 41.

    Kaygorodov, I., Volkov, Yu.: Complete classification of algebras of level two. Moscow Mathematical Journal 19(3), 485–521 (2019)

  42. 42.

    Kaygorodov, I., Volkov, Yu.: Degenerations of Filippov algebras. arXiv:1911.00358

  43. 43.

    Kim, H., Kim, K.: The structure of assosymmetric algebras. Journal of Algebra 319(6), 2243–2258 (2008)

  44. 44.

    Kleinfeld, E.: Assosymmetric rings. Proceedings of the American Mathematical Society 8, 983–986 (1957)

  45. 45.

    Mazzola, G.: The algebraic and geometric classification of associative algebras of dimension five. Manuscripta Mathematica 27(1), 81–101 (1979)

  46. 46.

    Mazzola, G.: Generic finite schemes and Hochschild cocycles. Commentarii Mathematici Helvetici 55(2), 267–293 (1980)

  47. 47.

    Pokrass, D., Rodabaugh, D.: Solvable assosymmetric rings are nilpotent. Proceedings of the American Mathematical Society 64(1), 30–34 (1977)

  48. 48.

    Seeley, C.: Degenerations of 6-dimensional nilpotent Lie algebras over ℂ. Communications in Algebra 18, 3493–3505 (1990)

  49. 49.

    Skjelbred, T., Sund, T.: Sur la classification des algebres de Lie nilpotentes. C. R. Acad. Sci. Paris Ser. A-B 286(5), A241–A242 (1978)

  50. 50.

    Zusmanovich, P.: Central extensions of current algebras. Trans. Am. Math. Soc. 334(1), 143–152 (1992)

Download references

Acknowledgments

This work was supported by FAPESP 18/15712-0; RFBR 18-31-20004; AP05131123 ”Cohomological and structural problems of non-associative algebras”. The authors thank Prof. Dr. Mykola Khrypchenko for constructive discussions about degenerations of algebras.

Author information

Correspondence to Ivan Kaygorodov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented by: Michel Brion

Appendix

Appendix

Table 1 The list of 4-dimensional nilpotent “pure” assosymmetric algebras
Table 2 The list of 4-dimensional nilpotent “pure” assosymmetric algebras

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ismailov, N., Kaygorodov, I. & Mashurov, F. The Algebraic and Geometric Classification of Nilpotent Assosymmetric Algebras. Algebr Represent Theor (2020). https://doi.org/10.1007/s10468-019-09935-y

Download citation

Keywords

  • Assosymmetric algebras
  • Nilpotent algebras
  • Algebraic classification
  • Central extension
  • Geometric classification
  • Degeneration

Mathematics Subject Classification 2010

  • 17A30
  • 17D25
  • 14D06
  • 14L30