Stability Conditions for Affine Type A

Abstract

We construct maximal green sequences of maximal length for any affine quiver of type A. We determine which sets of modules (equivalently c-vectors) can occur in such sequences and, among these, which are given by a linear stability condition (also called a central charge). There is always at least one such maximal set which is linear. The proofs use representation theory and three kinds of diagrams shown in Fig. 1. Background material is reviewed with details presented in two separate papers Igusa (2017a, b).

References

  1. 1.

    Assem, I., Simson, D., Skowroński, A.: Elements of the representation theory of associative algebras, 1: Techniques of representation theory London Mathematical Society Student Texts, vol. 65. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  2. 2.

    Auslander, M., Reiten, I., Smalø, S.O.: Representation theory of Artin algebras, vol. 36. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  3. 3.

    Bridgeland, T.: Stability conditions on triangulated categories. Ann. Math. 166 (2), 317–345 (2007)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bridgeland, T.: Spaces of stability conditions. Algebraic geometry–Seattle 1 (2009), 1–21 (2005)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Brüstle, T., Dupont, G., Pérotin, M.: On maximal green sequences. Int. Math. Res. Not. 2014, 4547–4586 (2014)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Brüstle, T., Smith, D., Treffinger, H.: Stability conditions, tau-tilting theory and maximal green sequences. arXiv:1705.08227 (2017)

  7. 7.

    Buan, A.B., Marsh, R.J., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204(2), 572–618 (2006)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Buan, A.B., Marsh, R.J., Reiten, I.: Cluster-tilted algebras. Trans. Amer. Math. Soc. 359(1), 323–332 (2007). (electronic)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Bucher, E.: Cluster algebras and maximal green sequences for closed surfaces (2016)

  10. 10.

    Chávez, A.N.: On the c-vectors of an acyclic cluster algebra. Int. Math. Res. Not. 6(2013), 1590–1600 (2015)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Derksen, H., Weyman, J.: Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients. J. Amer. Math. Soc. 13(3), 467–479 (2000). (electronic)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Dlab, V., Ringel, C.M.: Indecomposable representations of graphs and algebras. Vol. 173 American Mathematical Soc. (1976)

  13. 13.

    Keller, B.: On cluster theory and quantum dilogarithm identities. arXiv:1102.4148

  14. 14.

    Keller, B.: A survey on maximal green sequences, with an appendix by Laurent Demonet. arXiv:1904.09247

  15. 15.

    Hermes, S., Igusa, K.: The no gap conjecture for tame hereditary algebras. Journal of Pure and Applied Algebra 223(3), 1040–1053 (2019)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Igusa, K.: Linearity of stability conditions. arXiv:1706.06986 (2017)

  17. 17.

    Igusa, K.: Maximal green sequences for cluster-tilted algebras of finite type. arXiv:1706.06503 (2017)

  18. 18.

    Igusa, K., Orr, K., Todorov, G., Weyman, J.: Modulated semi-invariants. arXiv:1507.03051v2

  19. 19.

    Kase, R.: Remarks on lengths of maximal green sequences for quivers of type \(\widetilde {A}_{n,1}\). arXiv:1507.02852

  20. 20.

    King, A.D.: Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford 45, 515–530 (1994)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Muller, G.: The existence of a maximal green sequence is not invariant under quiver mutation. The Electronic Journal of Combinatorics 23(2), 2–47 (2016)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Qin, F.: Bases for upper cluster algebras and tropical points. arXiv:1902.09507

  23. 23.

    Qiu, Y.: Stability conditions and quantum dilogarithm identities for Dynkin quivers. Adv Math. 269, 220–264 (2015)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Reineke, M.: The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli. Invent. Math. 152(2), 349–368 (2003)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Cormier, E., Dillery, P., Resh, J., Serhiyenko, K., Whelan, J.: Minimal length maximal green sequences and triangulations of polygons. J. Algebraic Combin. 44(4), 905–930 (2016)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Rudakov, A.: Stability for an abelian category. J. of Algebra 197, 231–245 (1997)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Yakimov, M.: Maximal green sequences for double Bruhat cells, preprint (2014)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Igusa.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented by: Henning Krause.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Apruzzese, P.J., Igusa, K. Stability Conditions for Affine Type A. Algebr Represent Theor 23, 2079–2111 (2020). https://doi.org/10.1007/s10468-019-09926-z

Download citation

Keywords

  • Maximal green sequences
  • Cluster mutation
  • Quivers
  • c-vectors
  • Central charge
  • Wire diagram
  • Wall crossing

Mathematics Subject Classification (2010)

  • 16G20