Frobenius-Perron Dimensions of Integral \(\mathbb {Z}_{+}\)-rings and Applications

  • Pavel EtingofEmail author


We introduce the notion of the Frobenius-Perron dimension of an integral \(\mathbb {Z}_{+}\)-ring and give some applications of this notion to classification of finite dimensional quasi-Hopf algebras with a unique nontrivial simple module, and of quasi-Hopf and Hopf algebras of prime dimension p.


Hopf algebra quasi-Hopf algebra Frobenius-Perron dimension 

Mathematics Subject Classification (2010)

16T05 18D10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author is grateful to C. Negron for useful discussions and to V. Ostrik, S.-H. Ng and X. Wang for corrections and comments on the draft of this paper. The work of the author was partially supported by the NSF grant DMS-1502244.


  1. 1.
    Chebolu, S., Lockridge, K.: Fields with indecomposable multiplicative groups. Expo. Math. 34, 237–242 (2016). arXiv:1407.3481 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Creutzig, T., Gainutdinov, A.M., Runkel, I.: A quasi-Hopf algebra for the triplet vertex operator algebra. arXiv:1712.07260
  3. 3.
    Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories. AMS, Providence (2015)CrossRefGoogle Scholar
  4. 4.
    Etingof, P., Gelaki, S.: Quasisymmetric and unipotent tensor categories. Math. Res. Lett. 15(5), 857–866 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Etingof, P., Gelaki, S.: Finite dimensional quasi-Hopf algebras with radical of codimension 2. MRL 11(5), 685–696 (2004)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Etingof, P., Gelaki, S.: On finite-dimensional semisimple and cosemisimple Hopf algebras in positive characteristic, IMRN, 1998, Issue 16, pp. 851–864Google Scholar
  7. 7.
    Dolfi, S., Navarro, G.: Finite groups with only one nonlinear irreducible representation. Comm. Algebra 40(11), 4324–4329 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gainutdinov, A.M., Runkel, I.: Projective objects and the modified trace in factorisable finite tensor categories. arXiv:1703.00150
  9. 9.
    Negron, C.: Log-modular quantum groups at an even root of unity and quantum Frobenius I. arXiv:1812.02277
  10. 10.
    Nichols, W.: Bialgebras of type one. Comm. Algebra 6(15), 1521–1552 (1978)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ng, R., Wang, X.: Hopf algebras of prime dimension in positive characteristic, arXiv:1810.00476
  12. 12.
    Nguyen, V.C., Wang, L., Wang, X.: Classification of connected Hopf algebras of dimension p3, I, arXiv:1309.0286
  13. 13.
    Wang, X.: Connected Hopf algebras of dimension p 2. arXiv:1208.2280 (2280)

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations