Advertisement

Simplicity of Kac Modules for the Quantum General Linear Superalgebra

  • Randall R. HolmesEmail author
  • Chaowen Zhang
Article
  • 3 Downloads

Abstract

A general necessary and sufficient condition is obtained for a Kac module of the quantum general linear superalgebra to be simple. More explicit conditions are then obtained by considering separately the case where the quantum parameter is not a root of unity and the case where it is a root of unity.

Keywords

Quantum supergroup Quantum enveloping superalgebra General linear Representation Kac module Simple module 

Mathematics Subject Classification (2010)

17B37 17B50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors thank the referee for a careful reading of the paper and for several useful suggestions.

References

  1. 1.
    Humphreys, J.E.: Introduction to Lie algebras and representation theory, volume 9 of Graduate Texts in Mathematics. Springer-Verlag, New York (1978). Second printing, revisedGoogle Scholar
  2. 2.
    Jantzen, J.C.: Lectures on quantum groups, volume 6 of Graduate Studies in Mathematics. American Mathematical Society, Providence (1996)Google Scholar
  3. 3.
    Kac, V.G.: Lie superalgebras. Adv. Math. 26(1), 8–96 (1977)CrossRefzbMATHGoogle Scholar
  4. 4.
    Lusztig, G.: Quantum groups at roots of 1. Geom. Dedicata 35(1-3), 89–113 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Zhang, C.: On the quantum superalgebra \({U}_{q}(\mathfrak {gl}(m,n))\) and its representations at roots of 1. Science Press, Beijing (2016). arXiv:1211.4115v3.pdf Google Scholar
  6. 6.
    Zhang, R.B.: Finite-dimensional irreducible representations of the quantum supergroup U q(gl(m/n)). J. Math. Phys. 34(3), 1236–1254 (1993)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsAuburn UniversityAuburnUSA
  2. 2.Department of MathematicsChina University of Mining and TechnologyXuzhouPeople’s Republic of China

Personalised recommendations