A Note on Categorification and Spherical Harmonics

  • Suntharan Arunasalam
  • Joshua CiapparaEmail author
  • Diana M. H. Nguyen
  • Suo Jun Tan
  • Oded Yacobi


Using Khovanov’s categorification of the Weyl algebra, we investigate categorical structures arising from spherical harmonics. We categorify the \(\mathfrak {s}\mathfrak {l}(2,\mathbb {C})\)-action on the polynomial ring in n variables, and use this to categorify certain simple Verma modules. On the way we also categorify the standard action of matrix units \(E_{ij}\in \mathfrak {g}\mathfrak {l}(n,\mathbb {C})\) on the polynomial ring.


Spherical harmonics Categorification Verma modules 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was undertaken in 2015 as part of a six-week undergraduate summer research project organised at the University of Sydney. D.N., S.T. and S.A. acknowledge support from the School of Mathematics at the University of Sydney through the 2014/15 Vacation Research Scholarship. J.C.’s Vacation Research Scholarship was funded by the Australian Mathematical Sciences Institute. O.Y. acknowledges support from the Australian Research Council.


  1. 1.
    Chuang, J., Rouquier, R.: Derived equivalences for symmetric groups and sl2-categorification. Ann. Math. (2) 167(1), 245–298 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Goodman, R., Wallach, N.R.: Symmetry, representations, and invariants. Graduate Texts in Mathematics, 255. Springer, Dordrecht (2009). xx+ 716 ppCrossRefGoogle Scholar
  3. 3.
    Khovanov, M.: Nilcoxeter algebras categorify the Weyl algebra. Comm. Algebra 29(11), 5033–5052 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Khovanov, M., Lauda, A.D.: A diagrammatic approach to categorification of quantum groups. I. Represent. Theory 13, 309–347 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Khovanov, M., Mazorchuk, V., Stroppel, C.: A brief review of abelian categorifications. Theory Appl. Categ 22(19), 479–508 (2009)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Lauda, A.: A categorification of quantum \(\mathfrak {sl}_{2}\). Adv. Math. 225(6), 3327–3424 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Naisse, G., Vaz, P.: An approach to categorification of Verma modules. arXiv:1603.01555 (2016)
  8. 8.
    Rouquier, R.: 2-Kac-Moody algebras. arXiv:0812.5023 (2008)
  9. 9.
    Savage, A.: Introduction to categorification. CRM mini-course lecture notes. arXiv:1401.6037 (2014)
  10. 10.
    Webster, B.: Knot invariants and higher representation theory (preprint), arXiv:1309.3796v3

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of PhysicsUniversity of SydneyCamperdownAustralia
  2. 2.School of Mathematics and StatisticsUniversity of SydneyCamperdownAustralia
  3. 3.Mathematical Sciences InstituteAustralian National UniversityAustralian Capital TerritoryAustralia

Personalised recommendations