Degenerate 0-Schur Algebras and Nil-Temperley-Lieb Algebras

  • Bernt Tore Jensen
  • Xiuping SuEmail author
  • Guiyu Yang
Open Access


In Jensen and Su (J. Pure Appl. Algebra 219(2), 277–307 2014) constructed 0-Schur algebras, using double flag varieties. The construction leads to a presentation of 0-Schur algebras using quivers with relations and the quiver presentation naturally gives rise to a new class of algebras, which are introduced and studied in this paper. That is, these algebras are defined on the quivers of 0-Schur algebras with relations modified from the defining relations of 0-Schur algebras by a tuple of parameters t. In particular, when all the entries of t are 1, we recover 0-Schur algebras. When all the entries of t are zero, we obtain a class of basic algebras, which we call the degenerate 0-Schur algebras. We prove that the degenerate algebras are both associated graded algebras and quotients of 0-Schur algebras. Moreover, we give a geometric interpretation of the degenerate algebras using double flag varieties, in the same spirit as Jensen and Su (J. Pure Appl. Algebra 219(2), 277–307 2014), and show how the centralizer algebras are related to nil-Hecke and nil-Temperley-Lieb algebras.


0-Schur algebras Quivers Nil-Hecke algebras Nil-Temperley-Lieb algebras Double flag varieties 



We would like to thank the referee for helpful comments, which have improved the exposition in this paper, and especially for pointing out the reference [15] and it’s relevance to our results in Section 6.


  1. 1.
    Beilinson, A.A., Lusztig, G., MacPherson, R.: A geometric setting for the quantum deformation of GLn. Duke Math. J. 61(2), 655–677 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Deng, B., Du, J., Parshall, B., Wang, J.: Finite Dimensional Algebras and Quantum Groups. Mathematical Surveys and Monographs, vol. 150. American Mathematical Society, Providence (2008). xxvi+ 759 ppCrossRefGoogle Scholar
  3. 3.
    Deng, B., Yang, G: On 0-Schur algebras. J. Pure Appl. Alg. 216, 1253–1267 (2012)CrossRefzbMATHGoogle Scholar
  4. 4.
    Deng, B., Yang, G.: Representation type of 0-Hecke algebras. Sci. China Math. 54, 411–420 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dipper, R., James, G: The q-Schur algebra. Proc. London. Math. Soc. (3) 59 (1), 23–50 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Donkin, S.: The q-Schur Algebra, London Mathematical Society Lecture Note Series, vol. 253. Cambridge University Press, Cambridge (1998). x + 179 ppGoogle Scholar
  7. 7.
    Du, J.: A note on quantised Weyl reciprocity at roots of unity. Algebra Colloq. 2(4), 363–372 (1995)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Duchamp, G., Hivert, F., Thibon, J.: Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras. Internat. J. Algebra Comput. 12(5), 671–717 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fomin, S., Greene, C.: Noncommutative Schur functions and their applications, Selected papers in honor of Adriano Garsia (Taormina, 1994). Discrete Math. 193(1–3), 179–200 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fomin, S., Stanley, R.P.: Schubert polynomials and the nilCoxeter algebra. Adv. Math. 103, 196–207 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jensen, B.T., Su, X.: A geometric realisation of 0-Schur and 0-Hecke algebras. J. Pure Appl. Algebra 219(2), 277–307 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jensen, B.T., Su, X., Yang, G.: Projective modules of 0-Schur algebras. J. Algebra 454, 181–205 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Krob, D., Thibon, J.Y.: Noncommutative symmetric functions. IV. Quantum linear groups and Hecke algebras at q = 0. J. Algebraic Combin. 6, 339–376 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Matsumoto, H.: Generateurs et relations des groupes de Weyl generalises. C. R. Acad. Sci. Paris 258, 3419–3422 (1964)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Petersen, T.K., Tenner, B.: The depth of a permutation. J. Comb. 6, 145–178 (2015)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Reineke, M.: Generic extensions and multiplicative bases of quantum groups at q = 0. Represent. Theory 5, 147–163 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Rouquier, R.: Quiver Hecke algebras and 2-Lie algebras. Algebra Colloq. 19(2), 359–410 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Stanley, R.P.: Enumerative Combinatorics. Cambridge Studies in Advanced Mathematics, vol. 2, p 62. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  19. 19.
    Su, X.: A generic multiplication in quantised Schur algebras. Quart. J. Math. 61, 497–510 (2010)CrossRefzbMATHGoogle Scholar
  20. 20.
    Tits, J.: Le probleme des mots dans les groupes de Coxeter. 1969 Symposia Mathematica (IN- DAM, Rome, 1967/68), vol. 1, pp 175–185. Academic Press, London (1969). 20.10Google Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Mathematical Sciences, NTNU in GjøvikNorwegian University of Science and TechnologyGjøvikNorway
  2. 2.Department of Mathematical SciencesUniversity of BathBathUK
  3. 3.School of Mathematics and StatisticsShandong University of TechnologyZiboChina

Personalised recommendations