Advertisement

On Schur Rings over Infinite Groups

  • Nicholas Bastian
  • Jaden Brewer
  • Stephen Humphries
  • Andrew MisseldineEmail author
  • Cache Thompson
Article
  • 4 Downloads

Abstract

Schur rings are a type of subring of the group ring that is determined by a partition of the group. Past literature has exclusively focused on the finite group case. This paper extends many classic results about Schur rings to infinite groups, including Leung-Man’s classification of Schur rings over finite cyclic groups which is extended to the infinite cyclic group, as well as all torsion-free locally cyclic groups. Schurs rings over free groups and free products are also considered.

Keywords

Schur ring Cyclic group Locally cyclic group Torsion-free abelian group Laurent polynomial ring Association scheme Free group Free product 

Mathematics Subject Classification (2010)

20C07 16S34 20E25 20C05 05E30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Haviv, I., Levy, D.: Dioid partitions of groups, preprint (2018)Google Scholar
  2. 2.
    Heinze, A.: Applications of Schur Rings in Algebraic Combinatorics: Graphs, Partial Difference Sets and Cyclotomic Schemes. PhD thesis, Universität Oldenburg (2001)Google Scholar
  3. 3.
    Hendrikson, A.O.F.: Supercharacter theory constructions corresponding to Schur ring productsGoogle Scholar
  4. 4.
    Hirasaka, M., Muzychuk, Mi.: An elementary Abelian group of rank 4 is a CI-group. J. Combinator. Theory Series A 94, 339–362 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Khramtsov, D.G.: Finite groups of automorphisms of free groups. Mat. Zametki 476(3), 386–392 (1985)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Klin, M. Kh., Pöschel, R.: The König problem, the isomorphism problem for cyclic graphs and the method of Schur rings. Algebraic Methods Graph Theory 1, 2 (1978)zbMATHGoogle Scholar
  7. 7.
    Klin, M.Ch., Najmark, N.L., Pöschel, R.: Schur-rings over \(Z_{2}^{m}\). Prepr., Akad. Wiss. DDR, Inst. Math. P-Math-14/81, 31 p (1981)Google Scholar
  8. 8.
    Ka, H.L., Ma, S.L.: The structure of Schur rings over cyclic groups. J. Pure Appl. Algebra 66, 287–302 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ka, H.L., Man, S.H.: On Schur rings over cyclic groups II. J. Algebra 183, 273–285 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ka, H.L., Man, S.H.: On Schur rings over cyclic groups. Israel J. Math. 106, 251–267 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lopez, R.O.: An approximation to proof of the circulant Hadamard conjecture, preprint (2018)Google Scholar
  12. 12.
    Lopez, R.O.: Schur ring over group \(\mathbb {Z}_{2}^{n}\), circulant S −sets invariant by decimation and Hadamard matrices, preprint (2018)Google Scholar
  13. 13.
    Lyndon, R.C., Schupp, P.E.: Combinatorial group theory (1977)Google Scholar
  14. 14.
    Misseldine, A.: Algebraic and Combinatorial Properties of Schur Rings over Cyclic Groups. PhD thesis, Brigham Young University (2014)Google Scholar
  15. 15.
    Misseldine, A.: Primitive idempotents of Schur rings. Algebras Represent. Theory 17(5), 1615–1634 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Muzychuk, M., Ponomarenko, I.: Schur rings. Europ. J. Combinator. 30, 1526–1539 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Muzychuk, M.E.: On the structure of basic sets of Schur rings over cyclic groups. J. Algebra 169, 655–678 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pöschel, R.: Untersuchungen von S-Ringen, insbesondere im Gruppenring von p-Gruppen. Math. Nachr. 60, 1–27 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Saloff-Coste, L.: Probability on groups:random walks and invariant diffusions. Not. Am. Math. Soc. 48, 968–977 (2001)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Schur, I.: Zur theorie der einfach transitiven permutationsgruppen. Sitzungsber. Preuss. Akad. Wiss. Phy-Math Klasse. Berlin 118, 309–310 (1933)zbMATHGoogle Scholar
  21. 21.
    Scott, W.R.: Group Theory. Dover Publications, Inc., New York (1987)Google Scholar
  22. 22.
    Shiu, W.-C.: Schur rings over dihedral groups. Chin. J. Math. 18(3), 209–223 (1990)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Tamaschke, O.: On the theory of Schur-rings. Ann. Mat. Pura Appl. (4) 81, 1–43 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Tamaschke, O.: On Schur-rings which define a proper character theory on finite groups. Math. Z. 117, 340–360 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wielandt, H.: Zur theorie der einfach transitiven permutationsgruppen II (German). Math. Z. 52, 384–393 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Wielandt, H.: Finite Permutation Groups. Academic Press, New York (1964)zbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Southern Utah UniversityCedar CityUSA
  2. 2.Brigham Young UniversityProvoUSA

Personalised recommendations