Algebras and Representation Theory

, Volume 22, Issue 5, pp 1051–1081 | Cite as

Cluster Subalgebras and Cotorsion Pairs in Frobenius Extriangulated Categories

  • Wen Chang
  • Panyue ZhouEmail author
  • Bin Zhu


Nakaoka and Palu introduced the notion of extriangulated categories by extracting the similarities between exact categories and triangulated categories. In this paper, we study cotorsion pairs in a Frobenius extriangulated category \(\mathcal {C}\). Especially, for a 2-Calabi-Yau extriangulated category \(\mathcal {C}\) with a cluster structure, we describe the cluster substructure in the cotorsion pairs. For rooted cluster algebras arising from \(\mathcal {C}\) with cluster tilting objects, we give a one-to-one correspondence between cotorsion pairs in \(\mathcal {C}\) and certain pairs of their rooted cluster subalgebras which we call complete pairs. Finally, we explain this correspondence by an example relating to a Grassmannian cluster algebra.


Frobenius extriangulated categories 2-Calabi-Yau extriangulated (or triangulated) categories Cotorsion pairs Cluster algebras 

Mathematics Subject Classification (2010)

16S99 16S70 18E30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The correspondence in Corollary 5.6 was asked by Osamu Iyama in a conference at Seoul Korea in 2014. We are grateful to him for this. The authors also would like to thank the referees for reading the paper carefully and for many suggestions on mathematics and English expressions. The third author thanks Tiwei Zhao for his comments on the paper!


  1. 1.
    Assem, I., Dupont, G., Schiffler, R.: On a category of cluster algebras. J. Pure Appl. Algebra 218(3), 553–582 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Auslander, M., Reiten, I.: Applications of contravariantly finite subcategories. Adv. Math. 86(1), 111–152 (1991)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Beligiannis, A.: Rigid objects, triangulated subfactors and abelian localizations. Math. Z. 274(3-4), 841–883 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bühler, T.: Exact categories. Expo. Math. 28(1), 1–69 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Buan, A., Iyama, O., Reiten, I., Scott, J.: Cluster structures for 2-Calabi- Yau categories and unipotent groups. Compo. Math. 145(4), 1035–1079 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Buan, A., Marsh, R., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204(2), 572–618 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chang, W., Zhu, B.: On rooted cluster morphisms and cluster structures in 2-Calabi-Yau triangulated categories. J. Algebra 458, 387–421 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fu, C., Keller, B.: On cluster algebras with coefficients and 2-Calabi-Yau categories. Trans. Amer. Math. Soc. 362(2), 859–895 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations. J. Amer. Math. Soc. 15(2), 497–529 (2002)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Geiß, C., Leclerc, B., Schröer, J.: Partial flag varieties and preprojective algebras. Ann. Inst. Fourier 58(3), 825–876 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Geiß, C., Leclerc, B., Schröer, J.: Rigid modules over preprojective algebras. Invent. Math. 165, 589–632 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Geiß, C., Leclerc, B., Schröer, J.: Preprojective algebras and cluster algebras. In: Representation Theory of Algebras and Related Topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, pp. 253–283 (2008)Google Scholar
  13. 13.
    Happel, D.: Triangulated categories in the representation of finite dimensional algebras, vol. 119. Cambridge University Press, Cambridge (1988)CrossRefGoogle Scholar
  14. 14.
    Jørgensen, P.: Auslander-Reiten triangles in subcategories. J. K-Theory 3(3), 583–601 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jørgensenm, P.: Torsion classes and t-structures in higher homological algebra. Int. Math. Res. Not 2016(13), 3880–3905 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Iyama, O.: Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories. Adv. Math. 210(1), 22–50 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Iyama, O., Yoshino, Y.: Mutations in triangulated categories and rigid Cohen-Macaulay modules. Invent. Math. 172(1), 117–168 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jensen, B., King, A., Su, X.: A categorification of Grassmannian cluster algebras. Proc. Lond. Math. Soc. 113(3), 185–212 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Keller, B., Reiten, I.: Cluster-tilted algebras are Gorenstein Math stably Calabi-Yau. Adv. Math. 211, 123–151 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Koenig, S., Zhu, B.: From triangulated categories to abelian categories: cluster tilting in a general framework. Math. Z. 258, 143–160 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Liu, Y.: Hearts of twin cotorsion pairs on exact categories. J. Algebra 394, 245–284 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Liu, Y., Zhu, B.: Triangulated quotient categories. Comm. Algebra 41(10), 3720–3738 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Nakaoka, H.: General heart construction for twin torsion pairs on triangulated categories. J. Algebra 374, 195–215 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Nakaoka, H., Palu, Y.: Mutation via Hovey twin cotorsion pairs and model structures in extriangulated categories. arXiv:1605.05607 (2016)
  25. 25.
    Palu, Y.: Cluster characters for 2-Calabi-Yau triangulated categories. Ann. Inst. Fourier 58(6), 2221–2248 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Scott, J.: Grassmannians and cluster algebras. Proc. Lond. Math. Soc. 92(3), 345–380 (2006)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zhou, P., Zhu, B.: Triangulated quotient categories revisited. J. Algebra 502, 196–232 (2018)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhou, Y., Zhu, B.: Mutation of torsion pairs in triangulated categories and its geometric realization. arXiv:1105.3521, To appear in Algebr Represent Theor (2011)
  29. 29.
    Zhou, Y., Zhu, B.: T-structures and torsion pairs in a 2-Calabi-Yau triangulated category. J. Lond. Math. Soc. 89(1), 213–234 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Mathematics and Information ScienceShaanxi Normal UniversityXi’anPeople’s Republic of China
  2. 2.College of MathematicsHunan Institute of Science and TechnologyYueyangPeople’s Republic of China
  3. 3.Department of Mathematical SciencesTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations