Advertisement

Algebras and Representation Theory

, Volume 22, Issue 1, pp 1–19 | Cite as

Cluster Expansion Formulas in Type A

  • Toshiya YurikusaEmail author
Article
  • 24 Downloads

Abstract

The aim of this paper is to give analogs of the cluster expansion formula of Musiker and Schiffler for cluster algebras of type A with coefficients arising from boundary arcs of the corresponding triangulated polygon. Indeed, we give three cluster expansion formulas by perfect matchings of angles in triangulated polygon, by discrete subsets of arrows of the corresponding ice quiver and by minimal cuts of the corresponding quiver with potential.

Keywords

Cluster algebra Triangulation Perfect matching Quiver with potential 

Mathematics Subject Classfication (2010)

13F60 05C70 05E99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author would like to thank his supervisor Osamu Iyama and Laurent Demonet for the helpful advice and instruction.

References

  1. 1.
    Barot, M., Fernández, E., Platzeck, M.I., Pratti, N.I., Trepode, S.: From iterated tilted algebras to cluster-tilted algebras. Adv. Math. 223, 1468–1494 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Buan, A.B., Marsh, R., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204, 572–618 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Caldero, P., Chapoton, F.: Cluster algebras as hall algebras of quiver representations. European Math. Soc. 81, 595–616 (2006)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Caldero, P., Chapoton, F., Schiffler, R.: Quivers with relations arising from clusters (a n case). Trans. Amer. Math. 358, 1347–1364 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Caldero, P., Keller, B.: From triangulated categories to cluster algebras. II. Ann. Sci. É,cole Norm. Sup. 39(6), 983–1009 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Carroll, G., Price, G.: Two new combinatorial models for the Ptolemy recurrence. unpublished memo (2003)Google Scholar
  7. 7.
    Ceballos, C., Pilaud, V.: Cluster algebras of type D: pseudotriangulations approach. arXiv:1504.06377
  8. 8.
    Cerulli Irelli, G., Keller, B., Labardini-Fragoso, D., Plamondon, P.: Linear independence of cluster monomials for skew-symmetric cluster algebras. Compos. Math. 149, 1753–1764 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Demonet, L., Luo, X.: Ice quivers with potential associated with triangulations and Cohen-Macaulay modules over orders. Trans. Amer. Math. Soc. 368, 4257–4293 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations I: Mutations. Selecta Math. 14, 59–119 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces Part I: Cluster complexes. Acta Math. 201, 83–146 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fomin, S., Zelevinsky, A.: Cluster algebras I: foundations. Amer. Math. Soc. 15, 497–529 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fomin, S., Zelevinsky, A.: Cluster algebras II: Finite type classification. Invent. Math. 154, 63–121 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gekhtman, M., Shapiro, M., Vainshtein, A.: Cluster algebras and poisson geometry. Mathematical Surveys and Monographs. vol. 167, Amer. Math. Soc. Providence, RI (2010)Google Scholar
  15. 15.
    Herschend, M., Iyama, O.: Selfinjective quivers with potential and 2-representation-finite algebras. Comp. Math. 147, 1885–1920 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Keller, B.: Cluster algebras, quiver representations and triangulated categories. Triangulated categories, London Math. Society Lecture Note Series, vol. 375, Cambridge University Press (2010)Google Scholar
  17. 17.
    Lee, K., Schiffler, R.: A combinatorial formula for rank 2 cluster variables. Alg. Comb. 37, 67–85 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lee, K., Schiffler, R.: Positivity for cluster algebras. Ann. Math. 182, 73–125 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Musiker, G., Schiffler, R.: Cluster expansion formulas and perfect matchings. Alg. Comb. 32, 187–209 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Musiker, G., Schiffler, R., Williams, L.: Positivity for cluster algebras from surfaces. Adv. Math. 227, 2241–2308 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Palu, Y.: Cluster characters for 2-Calabi-Yau triangulated categories. Ann. Inst. Fourier 58(6), 2221–2248 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Plamondon, P.-G.: Cluster characters for cluster categories with infinite-dimensional morphism spaces. Adv. Math. 227, 1–39 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Propp, J.: The combinatorics of frieze patterns and markoff numbers, arXiv:math/0511633
  24. 24.
    Schiffler, R.: Cluster algebras and cluster categories, Lecture notes for the XVIII LATIN AMERICAN ALGEBRA COLLOQUIUM, Brazil, Aug 3–8 (2009)Google Scholar
  25. 25.
    Schiffler, R., Thomas, H.: On cluster algebras arising from unpunctured surfaces. Intern. Math. Res. Not. 17, 3160–3189 (2009)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Graduate School of MathematicsNagoya UniversityChikusa-kuJapan

Personalised recommendations