Algebras and Representation Theory

, Volume 21, Issue 4, pp 717–736 | Cite as

Flatness and Completion Revisited

  • Amnon YekutieliEmail author


We continue investigating the interaction between flatness and \({\frak{a}} \)-adic completion for infinitely generated A-modules. Here A is a commutative ring and \({\frak{a}} \) is a finitely generated ideal in it. We introduce the concept of \({\frak{a}} \)-adic flatness, which is weaker than flatness. We prove that \({\frak{a}} \)-adic flatness is preserved under completion when the ideal \({\frak{a}} \) is weakly proregular. We also prove that when A is noetherian, \({\frak{a}} \)-adic flatness coincides with flatness (for complete modules). An example is worked out of a non-noetherian ring A, with a weakly proregular ideal \({\frak{a}} \), for which the completion \(\widehat {A}\) is not flat. We also study \({\frak{a}} \)-adic systems, and prove that if the ideal \({\frak{a}} \) is finitely generated, then the limit of every \({\frak{a}} \)-adic system is a complete module.


Adic completion Adic system Flat module Noetherian ring Weakly proregular ideal 

Mathematics Subject Classification (2010)

Primary 13J10 Secondary 13B35 13E05 13C10 13C11 13D07 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Thanks to Liran Shaul, Sean Sather-Wagstaff, Asaf Yekutieli, Steven Kleiman, Brian Conrad, Ofer Gabber, Lorenzo Ramero, Pierre Deligne, Johan de Jong, Ilya Tyomkin and Leonid Positselski for helpful discussions. We also wish to thank the anonymous referee, for reading the paper carefully and suggesting several improvements.


  1. 1.
    Alonso, L., Jeremias, A., Lipman, J.: Local homology and cohomology on schemes. Ann. Sci. ENS 30, 1–39 (1997). Correction, availabe online at MathSciNetzbMATHGoogle Scholar
  2. 2.
    Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley, Boston (1969)zbMATHGoogle Scholar
  3. 3.
    Bartijn, J., Strooker, J.R.: Modifications monomiales. In: Sémin. Dubreil-Malliavin 1982. Lect. Notes Math, vol. 1029, pp. 192–217. Springer, Berlin (1983)Google Scholar
  4. 4.
    Bourbaki: Commutative Algebra Chapters 1–7. Springer, Berlin (1989)zbMATHGoogle Scholar
  5. 5.
    Enochs, E.E.: Complete flat modules. Comm. Algebra 13, 4821–4831 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gabber, O., Ramero, L.: Almost Ring Theory. Lect. Notes Math. Springer, Berlin (2003)Google Scholar
  7. 7.
    Kashiwara, M., Schapira, P.: Sheaves on Manifolds. Springer, Berlin (1990)CrossRefzbMATHGoogle Scholar
  8. 8.
    Hartshorne, R.: Local cohomology: a seminar given by A. Grothendieck, Lect. Notes Math., vol. 41. Springer, Berlin (1967)CrossRefGoogle Scholar
  9. 9.
    Matsumura, H.: Commutative Algebra, 2nd edn. Benjamin/Cummings, San Francisco (1980)zbMATHGoogle Scholar
  10. 10.
    MacLane, S., Schilling, O.F.G.: Zero-dimensional branches of rank one on algebraic varieties. Ann. Math. 40(3), 507–520 (1939)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Positselski, L.: Contraherent cosheaves, eprint arXiv:1209.2995
  12. 12.
    Positselski, L.: Abelian right perpendicular subcategories in module categories, eprint arXiv:1705.04960
  13. 13.
    Positselski, L., Rosicky, J.: Covers, envelopes, and cotorsion theories in locally presentable abelian categories and contramodule categories. J. Algebra 483, 83–128 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Porta, M., Shaul, L., Yekutieli, A.: On the homology of completion and torsion. Algebras Repesent. Theory 17, 31–67 (2014). Erratum: Algebras and Representation Theory, 18, 1401–1405 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Porta, M., Shaul, L., Yekutieli, A.: Completion by derived double centralizer. Algebras Represent. Theory 17, 481–494 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Schoutens, H.: A local flatness criterion for complete modules. Comm. Algebra 35, 289–311 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Schenzel, P.: Proregular sequences, local cohomology, and completion. Math. Scand. 92, 181–180 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    The Stacks Project, J.A. de Jong (Editor).
  19. 19.
    Yekutieli, A.: On flatness and completion for infinitely generated modules over noetherian rings. Comm. Algebra 39(11), 4221–4245 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Yekutieli, A.: Twisted deformation quantization of algebraic varieties. Adv. Mathamatics 268, 241–305 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Yekutieli, A.: Derived categories book to be published by Cambridge University Press, prepublication version available at arXiv:1610.09640

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of MathematicsBen Gurion UniversityBe’er ShevaIsrael

Personalised recommendations