Advertisement

Flexible slider crank mechanism synthesis using meta-heuristic optimization techniques: a new designer tool assistance for a compliant mechanism synthesis

  • Mohamed Amine Ben AbdallahEmail author
  • Imed Khemili
  • Nizar Aifaoui
Article
  • 4 Downloads

Abstract

This work bespeaks an insight into a real imperfect multibody systems synthesis, wherein the flexible behaviour of its components is considered. Based on the end-effector mechanism velocity, acceleration and defined transversal deflection for a flexible component, the mechanism optimal design variables have been investigated. Subsequently, the three aforementioned responses have been involved simultaneously for a combined optimization process. To this end, an Assistance Tool Design, subsuming several meta-heuristic optimization techniques such as Genetic Algorithm (GA), Imperialist Competitive Algorithm (ICA), Artificial Bee Colony (ABC), Ant Colony (AC), Differential Evolution (DE) and Simulating Annealing (SA) techniques, has been developed under MATLAB software. The Assistance Tool Design enables designers to carry out the synthesis of mechanisms by means of one or many optimization techniques mentioned above. It has been proven that AC and DE outperform the other optimization techniques. Nevertheless, awkwardness has been bearded for the mechanism synthesis using only a single response, mainly the flexible connecting rod mid-point transversal deflection. The combined synthesis subsuming simultaneously the three responses discussed above settles a perfect trade-off for all the optimization techniques.

Keywords

Assistance Tool for the Designer Mechanism synthesis Artificial Bee Colony Optimization Ant Colony Optimization Flexible multibody system 

Notes

References

  1. Acharyya SK, Mandal M (2009) Performance of EAs for four-bar linkage synthesis. Mech Mach Theory 44:1784–1794.  https://doi.org/10.1016/j.mechmachtheory.2009.03.003 CrossRefzbMATHGoogle Scholar
  2. Ahmadi B, Nariman-zadeh N, Jamali A (2017) Path synthesis of four-bar mechanisms using synergy of polynomial neural network and Stackelberg game theory. Eng Optim 49:932–947.  https://doi.org/10.1080/0305215X.2016.1218641 MathSciNetCrossRefGoogle Scholar
  3. Ambrósio JAC, Neto MA, Leal RP (2007) Optimization of a complex flexible multibody systems with composite materials. Multibody Syst Dyn 18:117–144.  https://doi.org/10.1007/s11044-007-9086-y CrossRefzbMATHGoogle Scholar
  4. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. 2007 IEEE Congr. Evol. Comput., pp 4661–4667Google Scholar
  5. Bataller A, Cabrera JA, Clavijo M, Castillo JJ (2016) Evolutionary synthesis of mechanisms applied to the design of an exoskeleton for finger rehabilitation. Mech Mach Theory 105:31–43.  https://doi.org/10.1016/j.mechmachtheory.2016.06.022 CrossRefGoogle Scholar
  6. Buskiewicz J (2015) A method for optimal path synthesis of four-link planar mechanisms. Inverse Probl Sci Eng 23:818–850.  https://doi.org/10.1080/17415977.2014.939654 MathSciNetCrossRefzbMATHGoogle Scholar
  7. Cabrera JA, Simon A, Prado M (2002) Optimal synthesis of mechanisms with genetic algorithms. Mech Mach Theory 37:1165–1177.  https://doi.org/10.1016/S0094-114X(02)00051-4 CrossRefzbMATHGoogle Scholar
  8. Cabrera JA, Nadal F, Muñoz JP, Simon A (2007) Multiobjective constrained optimal synthesis of planar mechanisms using a new evolutionary algorithm. Mech Mach Theory 42:791–806.  https://doi.org/10.1016/j.mechmachtheory.2006.07.004 MathSciNetCrossRefzbMATHGoogle Scholar
  9. Cabrera JA, Ortiz A, Nadal F, Castillo JJ (2011) An evolutionary algorithm for path synthesis of mechanisms. Mech Mach Theory 46:127–141.  https://doi.org/10.1016/j.mechmachtheory.2010.10.003 CrossRefzbMATHGoogle Scholar
  10. Chanekar PV, Fenelon MAA, Ghosal A (2013) Synthesis of adjustable spherical four-link mechanisms for approximate multi-path generation. Mech Mach Theory 70:538–552.  https://doi.org/10.1016/j.mechmachtheory.2013.08.009 CrossRefGoogle Scholar
  11. Demir O, Keskin I, Cetin S (2012) Modeling and control of a nonlinear half-vehicle suspension system: a hybrid fuzzy logic approach. Nonlinear Dyn 67:2139–2151.  https://doi.org/10.1007/s11071-011-0135-y CrossRefGoogle Scholar
  12. Ebrahimi S, Payvandy P (2015) Efficient constrained synthesis of path generating four-bar mechanisms based on the heuristic optimization algorithms. Mech Mach Theory 85:189–204.  https://doi.org/10.1016/j.mechmachtheory.2014.11.021 CrossRefGoogle Scholar
  13. El-Hawary ME (2008) Modern heuristic optimization techniques, theory and applications to power systems. Wiley, New YorkGoogle Scholar
  14. Erdman AG, George NS (1988) Advanced mechanism design: analysis and synthesis 2Google Scholar
  15. Erkaya S, Uzmay I (2008) A neural-genetic (NN-GA) approach for optimising mechanisms having joints with clearance. Multibody Syst Dyn 20:69–83.  https://doi.org/10.1007/s11044-008-9106-6 MathSciNetCrossRefzbMATHGoogle Scholar
  16. Erkaya S, Uzmay I (2009a) Optimization of transmission angle for slider-crank mechanism with joint clearances. Struct Multidiscipl Optim 37:493–508.  https://doi.org/10.1007/s00158-008-0243-6 CrossRefzbMATHGoogle Scholar
  17. Erkaya S, Uzmay İ (2009b) Determining link parameters using genetic algorithm in mechanisms with joint clearance. Mech Mach Theory 44:222–234.  https://doi.org/10.1016/j.mechmachtheory.2008.02.002 CrossRefzbMATHGoogle Scholar
  18. Flores P, Ambrósio J, Claro JP (2004) Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst Dyn 12:47–74.  https://doi.org/10.1023/B:MUBO.0000042901.74498.3a CrossRefzbMATHGoogle Scholar
  19. Gogate GR (2016) Inverse kinematic and dynamic analysis of planar path generating adjustable mechanism. Mech Mach Theory 102:103–122.  https://doi.org/10.1016/j.mechmachtheory.2016.03.014 CrossRefGoogle Scholar
  20. Golderberg DE (1953) Genetic algorithms in search, optimization and machine learning. Wesley, WokinghamGoogle Scholar
  21. Goldsztejn A, Caro S, Chabert G (2015) A three-step methodology for dimensional tolerance synthesis of parallel manipulators. Mech Mach Theory 105:213–234CrossRefGoogle Scholar
  22. Inner B, Kucuk S (2013) A novel kinematic design, analysis and simulation tool for general Stewart platforms. Simulation 89:876–897.  https://doi.org/10.1177/0037549713482733 CrossRefGoogle Scholar
  23. Karaboga D, Basturk B, Erciyes (2013) On the performance of artificial bee colony (ABC) algorithm. J Theor Appl Inf Technol 47:434–459.  https://doi.org/10.1016/j.asoc.2007.05.007 Google Scholar
  24. Kim J, Kim JW, Jeong SM, Seo TW (2016a) Numerical hybrid Taguchi-random coordinate search algorithm for path synthesis. Mech Mach Theory 102:203–216.  https://doi.org/10.1016/j.mechmachtheory.2016.04.001 CrossRefGoogle Scholar
  25. Kim JW, Seo TW, Kim J (2016b) A new design methodology for four-bar linkage mechanisms based on derivations of coupler curve. Mech Mach Theory 100:138–154.  https://doi.org/10.1016/j.mechmachtheory.2016.02.006 CrossRefGoogle Scholar
  26. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science (80-) 220:671–680MathSciNetCrossRefzbMATHGoogle Scholar
  27. Kucuk S (2012) Simulation and design tool for performance analysis of planar parallel manipulators. Simulation 88:542–556.  https://doi.org/10.1177/0037549711414157 CrossRefGoogle Scholar
  28. Kucuk S (2013) Energy minimization for 3-RRR fully planar parallel manipulator using particle swarm optimization. Mech Mach Theory 62:129–149.  https://doi.org/10.1016/j.mechmachtheory.2012.11.010 CrossRefGoogle Scholar
  29. Laliberté T, Gosselin C (2016) Synthesis, optimization and experimental validation of reactionless two-DOF parallel mechanisms using counter-mechanisms. Meccanica 51:3211–3225.  https://doi.org/10.1007/s11012-016-0582-0 MathSciNetCrossRefGoogle Scholar
  30. Laribi M, Mlika A, Romdhane L, Zeghloul S (2004) A combined genetic algorithm—fuzzy logic method (GA–FL) in mechanisms synthesis. Mech Mach Theory 39:717–735.  https://doi.org/10.1016/j.mechmachtheory.2004.02.004 CrossRefzbMATHGoogle Scholar
  31. Liang D, Song Y, Sun T, Dong G (2015) Optimum design of a novel redundantly actuated parallel manipulator with multiple actuation modes for high kinematic and dynamic performance. Nonlinear Dyn.  https://doi.org/10.1007/s11071-015-2353-1 Google Scholar
  32. Lin WY (2010) A GA-DE hybrid evolutionary algorithm for path synthesis of four-bar linkage. Mech Mach Theory 45:1096–1107.  https://doi.org/10.1016/j.mechmachtheory.2010.03.011 CrossRefzbMATHGoogle Scholar
  33. Liu Y, McCarthy JM (2017) Synthesis of a linkage to draw a plane algebraic curve. Mech Mach Theory 111:10–20.  https://doi.org/10.1016/j.mechmachtheory.2016.12.005 CrossRefGoogle Scholar
  34. Matekar SB, Gogate GR (2012) Optimum synthesis of path generating four-bar mechanisms using differential evolution and a modified error function. Mech Mach Theory 52:158–179.  https://doi.org/10.1016/j.mechmachtheory.2012.01.017 CrossRefGoogle Scholar
  35. Mazzotti C, Troncossi M, Parenti-Castelli V (2016) Dimensional synthesis of the optimal RSSR mechanism for a set of variable design parameters. Meccanica.  https://doi.org/10.1007/s11012-016-0584-y Google Scholar
  36. Mehar K, Singh S, Mehar R (2015) Optimal synthesis of four-bar mechanism for function generation with five accuracy points. Inverse Probl Sci Eng 23:37–41.  https://doi.org/10.1080/17415977.2014.993982 MathSciNetCrossRefzbMATHGoogle Scholar
  37. Mirmahdi SH, Norouzi M (2013) On the comparative optimal analysis and synthesis of four-bar function generating mechanism using different heuristic methods. Meccanica 48:1995–2006.  https://doi.org/10.1007/s11012-013-9718-7 CrossRefzbMATHGoogle Scholar
  38. Mullineux G (2011) Atlas of spherical four-bar mechanisms. Mech Mach Theory 46:1811–1823.  https://doi.org/10.1016/j.mechmachtheory.2011.06.001 CrossRefGoogle Scholar
  39. Nariman-Zadeh N, Felezi M, Jamali A, Ganji M (2009) Pareto optimal synthesis of four-bar mechanisms for path generation. Mech Mach Theory 44:180–191.  https://doi.org/10.1016/j.mechmachtheory.2008.02.006 CrossRefzbMATHGoogle Scholar
  40. Nikravesh PE (1988) Computer-aided analysis of mechanical systems. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  41. Peñuñuri F, Peón-Escalante R, Villanueva C, Cruz-Villar CA (2012) Synthesis of spherical 4R mechanism for path generation using differential evolution. Mech Mach Theory 57:62–70.  https://doi.org/10.1016/j.mechmachtheory.2012.07.003 CrossRefGoogle Scholar
  42. Romdhane L, Dhuibi H, Hadj Salah H (2003) Dynamic analysis of planar elastic mechanisms using the dyad method. Proc Inst Mech Eng Part K J Multi-body Dyn 217:1–14Google Scholar
  43. Russell K, Shen Q (2013) Expanded spatial four-link motion and path generation with order and branch defect elimination. Inverse Probl Sci Eng 21:129–140.  https://doi.org/10.1080/17415977.2012.672418 MathSciNetCrossRefzbMATHGoogle Scholar
  44. Sánchez Marín FT, González AP (2003) Global optimization in path synthesis based on design space reduction. Mech Mach Theory 38:579–594.  https://doi.org/10.1016/S0094-114X(03)00010-7 MathSciNetCrossRefzbMATHGoogle Scholar
  45. Sarac M, Solazzi M, Sotgiu E et al (2016) Design and kinematic optimization of a novel underactuated robotic hand exoskeleton. Meccanica.  https://doi.org/10.1007/s11012-016-0530-z Google Scholar
  46. Shabana AA (2010) Computational dynamicsGoogle Scholar
  47. Shabana AA (2013) Dynamics of multibody systems, 4th edn. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  48. Shariati M, Norouzi M (2011) Optimal synthesis of function generator of four-bar linkages based on distribution of precision points. Meccanica 46:1007–1021.  https://doi.org/10.1007/s11012-010-9357-1 MathSciNetCrossRefzbMATHGoogle Scholar
  49. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359.  https://doi.org/10.1023/A:1008202821328 MathSciNetCrossRefzbMATHGoogle Scholar
  50. Sun J, Lu H, Chu J (2015) Variable step-size numerical atlas method for path generation of spherical four-bar crank-slider mechanism. Inverse Probl Sci Eng 23:256–276.  https://doi.org/10.1080/17415977.2014.890615 MathSciNetCrossRefzbMATHGoogle Scholar
  51. Varedi-Koulaei SM, Daniali HM, Farajtabar M et al (2016) Reducing the undesirable effects of joints clearance on the behavior of the planar 3-RRR parallel manipulators. Nonlinear Dyn 86:1007–1022.  https://doi.org/10.1007/s11071-016-2942-7 CrossRefGoogle Scholar
  52. Wilhelm SR, Sullivan T, Van de Ven JD (2017) Solution rectification of slider-crank mechanisms with transmission angle control. Mech Mach Theory 41:1.  https://doi.org/10.1016/j.mechmachtheory.2005.10.005 Google Scholar
  53. Wu G, Zou P (2016) Comparison of 3-DOF asymmetrical spherical parallel manipulators with respect to motion/force transmission and stiffness. Mech Mach Theory 105:369–387.  https://doi.org/10.1016/j.mechmachtheory.2016.07.017 CrossRefGoogle Scholar
  54. Zhang D, Song B, Wang P, Chen X (2016) Multidisciplinary optimization design of a new underwater vehicle with highly efficient gradient calculation. Struct Multidiscipl Optim.  https://doi.org/10.1007/s00158-016-1575-2 Google Scholar
  55. Zhao T, Li E, Bian H et al (2017) Type synthesis and analysis of rotational parallel mechanisms with a virtual continuous axis. Mech Mach Theory 109:1.  https://doi.org/10.1016/j.mechmachtheory.2005.10.005 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratory of Mechanical Engineering, National Engineering School of MonastirUniversity of MonastirMonastirTunisia
  2. 2.Mechanical Laboratory of SousseHigher Institute of Applied Sciences and Technology of Sousse, University of SousseSousseTunisia

Personalised recommendations