Advertisement

Missing value imputation: a review and analysis of the literature (2006–2017)

  • Wei-Chao Lin
  • Chih-Fong TsaiEmail author
Article

Abstract

Missing value imputation (MVI) has been studied for several decades being the basic solution method for incomplete dataset problems, specifically those where some data samples contain one or more missing attribute values. This paper aims at reviewing and analyzing related studies carried out in recent decades, from the experimental design perspective. Altogether, 111 journal papers published from 2006 to 2017 are reviewed and analyzed. In addition, several technical issues encountered during the MVI process are addressed, such as the choice of datasets, missing rates and missingness mechanisms, and the MVI techniques and evaluation metrics employed, are discussed. The results of analysis of these issues allow limitations in the existing body of literature to be identified based upon which some directions for future research can be gleaned.

Keywords

Missing values Imputation Supervised learning Incomplete dataset Data mining 

Notes

Acknowledgements

The work of the first author was supported in part in part by the Healthy Aging Research Center, Chang Gung University from the Featured Areas Research Center Program within the Framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan under Grants EMRPD1I0481 and EMRPD1I0501, and in part by Chang Gung Memorial Hospital, Linkou under Grant CMRPD3I0031. This research of the second author was supported by the Ministry of Science and Technology of Taiwan (MOST 105-2410-H-008-043-MY3).

References

  1. Acuna E, Rodriguez C (2004) The treatment of missing values and its effect in the classifier accuracy. In: Banks D et al (eds) Classification, clustering and data mining applications. Springer, Berlin, pp 639–648CrossRefGoogle Scholar
  2. Aittokallio T (2009) Dealing with missing values in large-scale studies: microarray data imputation and beyond. Brief Bioinform 11(2):253–264CrossRefGoogle Scholar
  3. Armitage EG, Godzien J, Alonso-Herranz V, Lopez-Gonzalvez A, Barbas C (2015) Missing value imputation strategies for metabolomics data. Electrophoresis 36:3050–3060CrossRefGoogle Scholar
  4. Aussem A, de Morais SR (2010) A conservative feature subset selection algorithm with missing data. Neurocomputing 73:585–590CrossRefGoogle Scholar
  5. Aydilek IB, Arslan A (2012) A novel hybrid approach to estimating missing values in databases using k-nearest neighbors and neural networks. Int J Innov Comput Inf Control 8(7):4705–4717Google Scholar
  6. Aydilek IB, Arslan A (2013) A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm. Inf Sci 233:25–35CrossRefGoogle Scholar
  7. Baraldi AN, Enders CK (2010) An introduction to modern missing data analyses. J Sch Psychol 48:5–37CrossRefGoogle Scholar
  8. Bras LP, Menezes JC (2007) Improving cluster-based missing value estimation of DNA microarray data. Biomol Eng 24:273–282CrossRefGoogle Scholar
  9. Brock GN, Shaffer JR, Blakesley RE, Lotz MJ, Tseng GC (2008) Which missing value imputation method to use in expression profiles: a comparative study and two selection schemes. BMC Bioinform 9:12–23CrossRefGoogle Scholar
  10. Burgette LF, Reiter JP (2014) Multiple imputation for missing data via sequential regression trees. Am J Epidemiol 172(9):1070–1076CrossRefGoogle Scholar
  11. Celton M, Malpertuy A, Lelandais G, de Brevern AG (2010) Comparative analysis of missing value imputation methods to improve clustering and interpretation of microarray experiments. BMC Genom 11:15–30CrossRefGoogle Scholar
  12. Chen X, Wei Z, Li Z, Liang J, Cai Y, Zhang B (2017) Ensemble correlation-based low-rank matrix completion with applications to traffic data imputation. Knowl Based Syst 132:249–262CrossRefGoogle Scholar
  13. Cheng KO, Law NF, Siu WC (2012) Iterative bicluster-based least square framework for estimation of missing values in microarray gene expression data. Pattern Recogn 45:1281–1289CrossRefGoogle Scholar
  14. Chiu C-C, Chan S-Y, Wang C-C, Wu W-S (2013) Missing value imputation for microarray data: a comprehensive comparison study and a web tool. BMC Syst Biol 7:S12CrossRefGoogle Scholar
  15. Clark PG, Grzymala-Busse JW, Rzasa W (2014) Mining incomplete data with singleton, subset and concept probabilistic approximations. Inf Sci 280:368–384MathSciNetzbMATHCrossRefGoogle Scholar
  16. Conroy B, Eshelman L, Potes C, Xu-Wilson M (2016) A dynamic ensemble approach to robust classification in the presence of missing data. Mach Learn 102:443–463MathSciNetzbMATHCrossRefGoogle Scholar
  17. De Leeuw ED (2001) Reducing missing data in surveys: an overview of methods. Qual Quant 35:147–160CrossRefGoogle Scholar
  18. De Souto MCP, Jaskowiak PA, Costa IG (2015) Impact of missing data imputation methods on gene expression clustering and classification. Bioinformatics 16:64–72Google Scholar
  19. Di Nuovo AG (2011) Missing data analysis with fuzzy c-means: a study of its application in a psychological scenario. Expert Syst Appl 38:6793–6797CrossRefGoogle Scholar
  20. Di Zio M, Guarnera U, Luzi O (2007) Imputation through finite Gaussian mixture models. Comput Stat Data Anal 51:5305–5316MathSciNetzbMATHCrossRefGoogle Scholar
  21. Ding Y, Ross A (2012) A comparison of imputation methods for handling missing scores in biometric fusion. Pattern Recogn 45:919–933zbMATHCrossRefGoogle Scholar
  22. Ding Y, Simonoff JS (2010) An investigation of missing data methods for classification trees applied to binary response data. J Mach Learn Res 11:131–170MathSciNetzbMATHGoogle Scholar
  23. Donders ART, van der Heijden GJMG, Stijnen T, Moons KGM (2006) Review: a gentle introduction to imputation of missing values. J Clin Epidemiol 59:1087–1091CrossRefGoogle Scholar
  24. Doove LL, Van Buuren S, Dusseldorp E (2014) Recursive partitioning for missing data imputation in the presence of interaction effects. Comput Stat Data Anal 72:92–104MathSciNetzbMATHCrossRefGoogle Scholar
  25. Doquire G, Verleysen M (2012) Feature selection with missing data using mutual information estimators. Neurocomputing 90:3–11CrossRefGoogle Scholar
  26. Eirola E, Doquire G, Verleysen M, Lendasse A (2013) Distance estimation in numerical data sets with missing values. Inf Sci 240:115–128MathSciNetzbMATHCrossRefGoogle Scholar
  27. Eirola E, Lendasse A, Vandewalle V, Biernacki C (2014) Mixture of Gaussians for distance estimation with missing data. Neurocomputing 131:32–42CrossRefGoogle Scholar
  28. Farhangfar A, Kurgan LA, Pedrycz W (2007) A novel framework for imputation of missing values in databases. IEEE Trans Syst Man Cybern A Syst Humans 37(5):692–709CrossRefGoogle Scholar
  29. Farhangfar A, Kurgan LA, Dy J (2008) Impact of imputation of missing values on classification error for discrete data. Pattern Recogn 41:3692–3705zbMATHCrossRefGoogle Scholar
  30. Folino G, Pisani FS (2016) Evolving meta-ensemble of classifiers for handling incomplete and unbalanced datasets in the cyber security domain. Appl Soft Comput 47:179–190CrossRefGoogle Scholar
  31. Fortes I, Mora-Lopez L, Morales R, Triguero F (2006) Inductive learning models with missing values. Math Comput Model 44:790–806MathSciNetzbMATHCrossRefGoogle Scholar
  32. Gan X, Liew AW-C, Yan H (2006) Microarray missing data imputation based on a set theoretic framework and biological knowledge. Nucleic Acids Res 34(5):1608–1619CrossRefGoogle Scholar
  33. Garcia JCF, Kalenatic D, Bello CAL (2011) Missing data imputation in multivariate data by evolutionary algorithms. Comput Hum Behav 27:1468–1474CrossRefGoogle Scholar
  34. Garcia-Laencina PJ, Sancho-Gomez J-L, Figueiras-Vidal AR, Verleysen M (2009) K nearest neighbours with mutual information for simultaneous classification and missing data imputation. Neurocomputing 72:1483–1493CrossRefGoogle Scholar
  35. Garcia-Laencina PJ, Sancho-Gomez J-L, Figueiras-Vidal AR (2010) Pattern classification with missing data: a review. Neural Comput Appl 19:263–282CrossRefGoogle Scholar
  36. Garcia-Laencina PJ, Sancho-Gomez J-L, Figueiras-Vidal AR (2013) Classifying patterns with missing values using multi-task learning perceptrons. Expert Syst Appl 40:1333–1341CrossRefGoogle Scholar
  37. Garciarena U, Santana R (2017) An extensive analysis of the interaction between missing data types, imputation methods, and supervised classifiers. Expert Syst Appl 89:52–65CrossRefGoogle Scholar
  38. Gautam C, Ravi V (2015) Data imputation via evolutionary computation, clustering and a neural network. Neurocomputing 156:134–142CrossRefGoogle Scholar
  39. Ghanad-Rezaie M, Soltanian-Zadeh H, Ying H, Dong M (2010) Selection-fusion approach for classification of datasets with missing values. Pattern Recogn 43:2340–2350zbMATHCrossRefGoogle Scholar
  40. Ghorbani S, Desmarais MC (2017) Performance comparison of recent imputation methods for classification tasks over binary data. Appl Artif Intell 31(1):1–22Google Scholar
  41. Graham JW, Olchowski AE, Gilreath TD (2007) How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prev Sci 8:206–213CrossRefGoogle Scholar
  42. Hapfelmeier A, Ulm K (2014) Variable selection by random forests using data with missing values. Comput Stat Data Anal 80:129–139MathSciNetzbMATHCrossRefGoogle Scholar
  43. Hapfelmeier A, Hothorn T, Ulm K (2012) Recursive partitioning on incomplete data using surrogate decisions and multiple imputation. Comput Stat Data Anal 56:1552–1565MathSciNetzbMATHCrossRefGoogle Scholar
  44. Harel O, Zhou X-H (2007) Multiple imputation: review of theory, implementation and software. Stat Med 26:3057–3077MathSciNetCrossRefGoogle Scholar
  45. He Y, Zaslavsky AM, Harrington DP, Catalano HP, Landrum MB (2009) Multiple imputation in a large-scale complex survey: a practical guide. Stat Methods Med Res 19(6):653–670MathSciNetCrossRefGoogle Scholar
  46. Hron K, Templ M, Filzmoser P (2010) Imputation of missing values for compositional data using classical and robust methods. Comput Stat Data Anal 54:3095–3107MathSciNetzbMATHCrossRefGoogle Scholar
  47. Hruschka ER Jr, Hruschka ER, Ebecken NFF (2007) Bayesian networks for imputation in classification problems. J Intell Inf Syst 29:231–252CrossRefGoogle Scholar
  48. Hu J, Li H, Waterman MS, Zhou XJ (2006) Integrative missing value estimation for microarray data. BMC Bioinform 7:449–462CrossRefGoogle Scholar
  49. Huang MW, Lin W-C, Chen C-W, Ke S-W, Tsai C-F, Eberle W (2016) Data preprocessing issues for incomplete medical datasets. Expert Syst 33(5):432–438CrossRefGoogle Scholar
  50. Huang J, Keung JW, Sarro F, Li Y-F, Yu YT, Chan WK, Sun H (2017) Cross-validation based K nearest neighbor imputation for software quality datasets: an empirical study. J Syst Softw 132:226–252CrossRefGoogle Scholar
  51. Iacus SM, Porro G (2007) Missing data imputation, matching and other applications of random recursive partitioning. Comput Stat Data Anal 52:773–789MathSciNetzbMATHCrossRefGoogle Scholar
  52. Janssen KJM, Donders ART, Harrell FE Jr, Vergouwe Y, Chen Q, Grobbee DE, Moons KGM (2010) Missing covariate data in medical research: to impute is better than to ignore. J Clin Epidemiol 63:721–727CrossRefGoogle Scholar
  53. Jerez JM, Molina I, Garcia-Laencina PJ, Alba E, Ribelles N, Martin M, Franco L (2010) Missing data imputation using statistical and machine learning methods in real breast cancer problem. Artif Intell Med 50:105–115CrossRefGoogle Scholar
  54. Kang P (2013) Locally linear reconstruction based missing value imputation for supervised learning. Neurocomputing 118:65–78CrossRefGoogle Scholar
  55. Kapelner A, Bleich J (2015) Prediction with missing data via Bayesian additive regression trees. Can J Stat 43(2):224–239MathSciNetzbMATHCrossRefGoogle Scholar
  56. Khoshgoftaar TM, Van Hulse J (2008) Imputation techniques for multivariate missingness in software measurement data. Softw Qual J 16:563–600CrossRefGoogle Scholar
  57. Kiasari MA, Jang G-J, Lee M (2017) Novel iterative approach using generative ad discriminative models for classification with missing features. Neurocomputing 225:23–30CrossRefGoogle Scholar
  58. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. Int Joint Conf Artif Intell 2:1137–1143Google Scholar
  59. Leung KC, Leung CH (2013) Dynamic discriminant functions with missing feature values. Pattern Recogn Lett 34:1548–1556CrossRefGoogle Scholar
  60. Li YY, Parker LE (2014) Nearest neighbor imputation using spatial-temporal correlations in wireless sensor networks. Inf Fusion 15:64–79CrossRefGoogle Scholar
  61. Li D, Gu H, Zhang L (2010) A fuzzy c-means clustering algorithm based on nearest-neighbor intervals for incomplete data. Expert Syst Appl 37:6942–6947CrossRefGoogle Scholar
  62. Li Z, Sharaf MA, Sitbon L, Sadiq S, Indulska M, Zhou X (2014) A web-based approach to data imputation. World Wide Web 17:873–897CrossRefGoogle Scholar
  63. Liao S, Lin Y, Kang DD, Chandra D, Bon J, Kaminski N, Sciurba FC, Tseng GC (2014) Missing value imputation in high-dimensional phenomic data: imputable or not, and how? BMC Bioinform 15:346–357CrossRefGoogle Scholar
  64. Liew AW-C, Law N-F, Yan H (2011) Missing value imputation for gene expression data: computation techniques to recover missing data from available information. Brief Bioinform 12(5):498–513CrossRefGoogle Scholar
  65. Lin T, Lee JC, Ho HJ (2006) On fast supervised learning for normal mixture models with missing information. Pattern Recogn 39:1177–1187zbMATHCrossRefGoogle Scholar
  66. Little RJA, Rubin DB (1987) Statistical analysis with missing data. Wiley, HobokenzbMATHGoogle Scholar
  67. Liu C-C, Dai D-Q, Yan H (2010) The theoretic framework of local weighted approximation for microarray missing value estimation. Pattern Recogn 43:2993–3002zbMATHCrossRefGoogle Scholar
  68. Liu J, Musialski P, Wonka P, Ye J (2013) Tensor completion for estimating missing values in visual data. IEEE Trans Pattern Anal Mach Intell 35(1):208–220CrossRefGoogle Scholar
  69. Luengo J, Garcia S, Herrera F (2012) On the choice of the best imputation methods for missing values considering three groups of classification methods. Knowl Inf Syst 32:77–108CrossRefGoogle Scholar
  70. Merlin P, Sorjamaa A, Maillet B, Lendasse A (2010) X-SOM and L-SOM: a double classification approach for missing value imputation. Neurocomputing 73:1103–1108CrossRefGoogle Scholar
  71. Mesquite DPP, Gomes JPP, Junior AHS, Nobre JS (2017) Euclidean distance estimation in incomplete datasets. Neurocomputing 248:11–18CrossRefGoogle Scholar
  72. Moons KGM, Donders RART, Stijnen T, Harrell FE Jr (2006) Using the outcome for imputation of missing predictor values was preferred. J Clin Epidemiol 59:1092–1101CrossRefGoogle Scholar
  73. Munoz JF, Rueda M (2009) New imputation methods for missing data using quantiles. J Comput Appl Math 232:305–317MathSciNetzbMATHCrossRefGoogle Scholar
  74. Nishanth KJ, Ravi V (2016) Probabilistic neural network based categorical data imputation. Neurocomputing 218:17–25CrossRefGoogle Scholar
  75. Nishanth KJ, Ravi V, Ankaiah N, Bose I (2012) Soft computing based imputation and hybrid data and text mining: the case of predicting the severity of phishing alerts. Expert Syst Appl 39:10583–10589CrossRefGoogle Scholar
  76. Oh S, Kang DD, Brock GN, Tseng GC (2011) Biological impact of missing-value imputation on downstream analyses of gene expression profiles. Bioinformatics 27(1):78–86CrossRefGoogle Scholar
  77. Pan R, Yang T, Cao J, Lu K, Zhang Z (2015) Missing data imputation by K nearest neighbours based on grey relational structure and mutual information. Appl Intell 43:614–632CrossRefGoogle Scholar
  78. Pati SK, Das AK (2017) Missing value estimation for microarray data through cluster analysis. Knowl Inf Syst 52(3):709–750CrossRefGoogle Scholar
  79. Paul A, Sil J, Mukhopadhyay CD (2017) Gene selection for designing optimal fuzzy rule base classifier by estimating missing value. Appl Soft Comput 55:276–288CrossRefGoogle Scholar
  80. Peng C-Y, Zhu J (2008) Comparison of two approaches for handling missing covariates in logistic regression. Educ Psychol Measur 68:58–77MathSciNetCrossRefGoogle Scholar
  81. Polikar R, DePasquale J, Mohammed HS (2010) Learn++.MF: a random subspace approach for the missing feature problem. Pattern Recogn 43:3817–3832zbMATHCrossRefGoogle Scholar
  82. Purwar A, Singh SK (2015) Hybrid prediction model with missing value imputation for medical data. Expert Syst Appl 42:5621–5631CrossRefGoogle Scholar
  83. Qin Y, Zhang S, Zhu X, Zhang J, Zhang C (2007) Semi-parametric optimization for missing data imputation. Appl Intell 27(1):79–88zbMATHCrossRefGoogle Scholar
  84. Qin Y, Zhang S, Zhu X, Zhang J, Zhang C (2009) POP algorithm: kernel-based imputation to treat missing values in knowledge discovery from databases. Expert Syst Appl 36:2794–2804CrossRefGoogle Scholar
  85. Rahman MdG, Islam MdZ (2013) Missing value imputation using decision trees and decision forests by splittling and merging records: two novel techniques. Knowl Based Syst 53:51–65CrossRefGoogle Scholar
  86. Rao SSS, Shepherd LA, Bruno AE, Liu S, Miecznikowski JC (2013) Comparing imputation procedures for affymetrix gene expression datasets using MAQC datasets. Adv Bioinform 2013:790567CrossRefGoogle Scholar
  87. Raymond M, Roberts D (1987) A comparison of methods for treating incomplete data in selection research. Educ Psychol Meas 47:13–26CrossRefGoogle Scholar
  88. Saar-Tsechansky M, Provost F (2007) Handling missing values when applying classification models. J Mach Learn Res 8:1625–1657zbMATHGoogle Scholar
  89. Saha B, Gupta S, Phung D, Venkatesh S (2017) Effective sparse imputation of patient conditions in electronic medical records for emergency risk predictions. Knowl Inf Syst 53(1):179–206CrossRefGoogle Scholar
  90. Sehgal MSB, Gondal I, Dooley LS, Coppel R (2008) Ameliorative missing value imputation for robust biological knowledge inference. J Biomed Inform 41:499–514CrossRefGoogle Scholar
  91. Sehgal MSB, Gondal I, Dooley LS, Coppel R (2009) How to improve postgenomic knowledge discovery using imputation. EURASIP J Bioinform Syst Biol 2009:717136CrossRefGoogle Scholar
  92. Shah AD, Bartlett JW, Carpenter J, Nicholas O, Hemingway H (2014) Comparison of random forest and parametric imputation models for imputing missing data using MICE: a caliber study. Am J Epidemiol 179(6):764–774CrossRefGoogle Scholar
  93. Shao J, Meng W, Sun G (2017) Evaluation of missing value imputation methods for wireless soil datasets. Pers Ubiquit Comput 21(1):113–123CrossRefGoogle Scholar
  94. Silva-Ramirez E-L, Pino-Mejias R, Lopez-Coello M, Cubiles-de-la-Vega M-D (2011) Missing value imputation on missing completely at random data using multilayer perceptrons. Neural Netw 24:121–129CrossRefGoogle Scholar
  95. Silva-Ramirez E-L, Pino-Mejias R, Lopez-Coello M (2015) Single imputation with multilayer perceptron and multiple imputation combining multilayer perceptron and k-nearest neighbours for monotone patterns. Appl Soft Comput 29:65–74CrossRefGoogle Scholar
  96. Somasundaram RS, Nedunchezhian R (2011) Evaluation of three simple imputation methods for enhancing preprocessing of data with missing values. Int J Comput Appl 12(10):14–19Google Scholar
  97. Song Q, Shepperd M, Chen X, Liu J (2008) Can k-NN imputation improve the performance of C4.5 with small software project datasets? A comparative evaluation. J Syst Softw 81:2361–2370CrossRefGoogle Scholar
  98. Stekhoven DJ, Buhlmann P (2012) MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28(1):112–118CrossRefGoogle Scholar
  99. Strike K, Emam KE, Madhavji N (2001) Software cost estimation with incomplete data. IEEE Trans Softw Eng 27(10):890–908CrossRefGoogle Scholar
  100. Subasi MM, Subasi E, Anthony M, Hammer PL (2011) A new imputation method for incomplete binary data. Discrete Appl Math 159:1040–1047MathSciNetzbMATHCrossRefGoogle Scholar
  101. Sun Y, Braga-Neto U, Dougherty ER (2009) Impact of missing value imputation on classification for DNA microarray gene expression data—a model-based study. EURASIP J Bioinform Syst Biol 2009:504069CrossRefGoogle Scholar
  102. Tian J, Yu B, Yu D, Ma S (2014) Missing data analyses: a hybrid multiple imputation algorithm using gray system theory and entropy based on clustering. Appl Intell 40:376–388CrossRefGoogle Scholar
  103. Tsai C-F, Chang F-Y (2016) Combining instance selection for better missing value imputation. J Syst Softw 122:63–71CrossRefGoogle Scholar
  104. Tsikriktsis N (2005) A review of techniques for treating missing data in OM survey research. J Oper Manag 24:53–62CrossRefGoogle Scholar
  105. Tuikkala J, Elo LL, Nevalainen OS, Aittokallio T (2008) Missing value imputation improves clustering and interpretation of gene expression microarray data. BMC Bioinform 9:202–215CrossRefGoogle Scholar
  106. Twala B (2009) An empirical comparison of techniques for handling incomplete data using decision trees. Appl Artif Intell 23(5):373–405CrossRefGoogle Scholar
  107. Twala BETH, Jones MC, Hand DJ (2008) Good methods for coping with missing data in decision trees. Pattern Recogn Lett 29:950–956CrossRefGoogle Scholar
  108. Valdiviezo HC, Van Aelst S (2015) Tree-based prediction on incomplete data using imputation or surrogate decision. Inf Sci 311:163–181CrossRefGoogle Scholar
  109. Van Ginkel JR, Kroonenberg PM (2014) Using generalized procrustes analysis for multiple imputation in principal component analysis. J Classif 31:242–269MathSciNetzbMATHCrossRefGoogle Scholar
  110. Van Ginkel JR, Van der Ark LA, Sijtsma K, Vermunt JK (2007) Two-way imputation: a Bayesian method for estimating missing scores in tests and questionnaires, and an accurate approximation. Comput Stat Data Anal 51:4013–4027zbMATHCrossRefGoogle Scholar
  111. Van Hulse J, Khoshgoftaar TM (2014) Incomplete-case nearest neighbor imputation in software measurement data. Inf Sci 259:596–610CrossRefGoogle Scholar
  112. Wang X, Li A, Jiang Z, Feng H (2006) Missing value estimation for DNA microarray gene expression data by support vector regression imputation and orthogonal coding scheme. BMC Bioinform 7:32–41CrossRefGoogle Scholar
  113. Xia J, Zhang S, Cai G, Li L, Pan Q, Yan J, Ning G (2017) Adjusted weight voting algorithm for random forests in handling missing values. Pattern Recogn 69:52–60CrossRefGoogle Scholar
  114. Yan Y-T, Zhang Y-P, Zhang Y-W, Du X-Q (2017) A selective neural network ensemble classification for incomplete data. Int J Mach Learn Cybern 8(5):1513–1524CrossRefGoogle Scholar
  115. Yu T, Peng H, Sun W (2011) Incorporating nonlinear relationships in microarray missing value imputation. IEEE/ACM Trans Comput Biol Bioinf 8(3):723–731CrossRefGoogle Scholar
  116. Zhang S (2008) Parimputation: from imputation and null-imputation to partially imputation. IEEE Intell Inform Bull 9(1):32–38Google Scholar
  117. Zhang S (2011) Shell-neighbor method and its application in missing data imputation. Appl Intell 35:123–133CrossRefGoogle Scholar
  118. Zhang S (2012) Nearest neighbor selection for iteratively kNN imputation. J Syst Softw 85:2541–2552CrossRefGoogle Scholar
  119. Zhang Y, Liu Y (2009) Data imputation using least squares support vector machines in urban arterial streets. IEEE Signal Process Lett 16(5):414–417MathSciNetCrossRefGoogle Scholar
  120. Zhang X, Song X, Wang H, Zhang H (2008) Sequential local least squares imputation estimating missing value of microarray data. Comput Biol Med 38:1112–1120CrossRefGoogle Scholar
  121. Zhang S, Jin Z, Zhu X (2011) Missing data imputation by utilizing information within incomplete instances. J Syst Softw 84:452–459CrossRefGoogle Scholar
  122. Zhang L, Bing Z, Zhang L (2015) A hybrid clustering algorithm based on missing attribute interval estimation for incomplete data. Pattern Anal Appl 18:377–384MathSciNetCrossRefGoogle Scholar
  123. Zhu X, Zhang S, Jin Z, Zhang Z, Xu Z (2011) Missing value estimation for mixed-attribute data sets. IEEE Trans Knowl Data Eng 23(1):110–121CrossRefGoogle Scholar
  124. Zhu B, He C, Liatsis P (2012) A robust missing value imputation method for noisy data. Appl Intell 36:61–74CrossRefGoogle Scholar
  125. Zuccolotto P (2012) Principal component analysis with interval imputed missing values. AStA Adv Stat Anal 96:1–23MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Information ManagementChang Gung UniversityTaoyuanTaiwan
  2. 2.Healthy Aging Research CenterChang Gung UniversityTaoyuanTaiwan
  3. 3.Department of Thoracic SurgeryChang Gung Memorial HospitalLinkouTaiwan
  4. 4.Department of Information ManagementNational Central UniversityZhongliTaiwan

Personalised recommendations