Artificial Intelligence Review

, Volume 50, Issue 2, pp 241–259 | Cite as

Review of background subtraction methods using Gaussian mixture model for video surveillance systems

  • Kalpana GoyalEmail author
  • Jyoti Singhai


Foreground detection or moving object detection is a fundamental and critical task in video surveillance systems. Background subtraction using Gaussian Mixture Model (GMM) is a widely used approach for foreground detection. Many improvements have been proposed over the original GMM developed by Stauffer and Grimson (IEEE Computer Society conference on computer vision and pattern recognition, vol 2, Los Alamitos, pp 246–252, 1999. doi: 10.1109/CVPR.1999.784637) to accommodate various challenges experienced in video surveillance systems. This paper presents a review of various background subtraction algorithms based on GMM and compares them on the basis of quantitative evaluation metrics. Their performance analysis is also presented to determine the most appropriate background subtraction algorithm for the specific application or scenario of video surveillance systems.


Background Subtraction Background modeling Gaussian Mixture Model Foreground detection Video surveillance 


  1. Bouwmans T (2009) Subspace learning for background modeling: a survey. Recent Patents Comput Sci 2(3):223–234CrossRefGoogle Scholar
  2. Bouwmans T (2011) Recent advanced statistical background modeling for foreground detection-a systematic survey. Recent Patents Comput Sci 4(3):147–176Google Scholar
  3. Bouwmans T (2014) Traditional and recent approaches in background modeling for foreground detection: an overview. Comput Sci Rev 11–12:31–66CrossRefzbMATHGoogle Scholar
  4. Bouwmans T, Baf FE (2010) Statistical background modeling for foreground detection: a survey. Handbook of Pattern Recognition and Computer pp 181–199Google Scholar
  5. Bouwmans T, Baf FE, Vachon B (2008) Background modeling using mixture of Gaussians for foreground detection a survey. In: Recent patents on computer science, pp 219–237Google Scholar
  6. Butler D, Sridharan S, Bove VMJ (2003) Real-time adaptive background segmentation. In: Multimedia and expo, 2003. ICME ’03. Proceedings. 2003 International Conference on, vol 3, pp 341–344Google Scholar
  7. Chan A, Mahadevan V, Vasconcelos N (2011) Generalized Stauffer–Grimson background subtraction for dynamic scenes. Mach Vis Appl 22(5):751–766. doi: 10.1007/s00138-010-0262-3 CrossRefGoogle Scholar
  8. Chang R, Gandhi T, Trivedi M (2004) Vision modules for a multi-sensory bridge monitoring approach. In: Intelligent transportation systems, 2004. Proceedings. The 7th international IEEE conference on, pp 971–976Google Scholar
  9. Chen Z, Ellis T (2014) A self-adaptive Gaussian mixture model. Comput Vis Image Underst 122:35–46. doi: 10.1016/j.cviu.2014.01.004 CrossRefGoogle Scholar
  10. Cheung SCS, Kamath C (2004) Robust techniques for background subtraction in urban traffic video. In: Panchanathan S, Vasudev B (eds) Proceedings Visual Communications and Image Processing, SPIE, vol 5308, pp 881–892Google Scholar
  11. Elgammal A, Harwood D, Davis L (2000) Non-parametric model for background subtraction. In: Vernon D (ed) Computer Vision-ECCV 2000, vol 1843., Lecture Notes in Computer Science. Springer, Berlin, pp 751–767Google Scholar
  12. Figueiredo MAT, Jain AK (2002) Unsupervised learning of finite mixture models. IEEE Trans Pattern Anal Mach Intell 24(3):381. doi: 10.1109/34.990138 CrossRefGoogle Scholar
  13. Goyette N, Jodoin P, Porikli F, Konrad J, Ishwar P (2012) a new change detection benchmark dataset. In: Computer vision and pattern recognition workshops (CVPRW), 2012 IEEE Computer Society Conference on, pp 1–8Google Scholar
  14. Ilyas A, Scuturici M, Miguet S (2009) Real time foreground-background segmentation using a modified codebook model. In: Advanced video and signal based surveillance, 2009. AVSS ’09. Sixth IEEE International Conference on, pp 454–459Google Scholar
  15. KaewTraKulPong P, Bowden R (2002) An improved adaptive background mixture model for real-time tracking with shadow detection. In: Remagnino P, Jones G, Paragios N, Regazzoni C (eds) Video-Based Surveill Syst. Springer, Berlin, pp 135–144CrossRefGoogle Scholar
  16. Lee DS (2005) Effective Gaussian mixture learning for video background subtraction. IEEE Trans Pattern Anal Mach Intell 27(5):827–832. doi: 10.1109/TPAMI.2005.102 CrossRefGoogle Scholar
  17. McFarlane N, Schofield C (1995) Segmentation and tracking of piglets in images. Mach Vis Appl 8(3):187–193. doi: 10.1007/BF01215814 CrossRefGoogle Scholar
  18. Messelodi S, Modena C, Segata N, Zanin M (2005) A Kalman filter based background updating algorithm robust to sharp illumination changes. In: Roli F, Vitulano S (eds) Image analysis and processing ICIAP 2005, vol 3617., Lecture Notes in Computer ScienceSpringer, Berlin, pp 163–170Google Scholar
  19. Piccardi M (2004) Background subtraction techniques: a review. In: Systems, man and cybernetics, 2004 IEEE international conference on, vol. 4, pp 3099–3104Google Scholar
  20. Power PW, Schoonees JA (2002) Understanding background mixture models for foreground segmentation. In: Proceedings image and vision computing New ZealandGoogle Scholar
  21. Roy A, Shinde S, don Kang K (2010) An approach for efficient real time moving object detection. In: Embedded systems & applications (ESA), International Conference on (2010)Google Scholar
  22. Shah M, Deng J, Woodford B (2010) Localized adaptive learning of mixture of Gaussians models for background extraction. In: Image and Vision Computing New Zealand (IVCNZ), 25th international conference of, pp 1–8. doi: 10.1109/IVCNZ.2010.6148870
  23. Shah M, Deng J, Woodford B (2014) Video background modeling: recent approaches, issues and our proposed techniques. Mach Vis Appl 25(5):1105–1119. doi: 10.1007/s00138-013-0552-7 CrossRefGoogle Scholar
  24. Sobral A, Vacavant A (2014) A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput Vis Image Underst 122:4–21. doi: 10.1016/j.cviu.2013.12.005 CrossRefGoogle Scholar
  25. Stauffer C, Grimson W (1999) Adaptive background mixture models for real-time tracking. In: Computer vision and pattern recognition, 1999. IEEE Computer Society Conference on., vol 2, pp 246–252. Los Alamitos. doi: 10.1109/CVPR.1999.784637
  26. Toyama K, Krumm J, Brumitt B, Meyers B (1999) Wallflower: principles and practice of background maintenance. In: Computer vision, 1999. The proceedings of the seventh IEEE international conference on, vol 1, pp 255–261Google Scholar
  27. Vacavant A, Chateau T, Wilhelm A, Lequivre L (2013) A benchmark dataset for outdoor foreground/background extraction. In: Park JI, Kim J (eds) Computer Vision—ACCV 2012 Workshops, vol 7728., Lecture Notes in Computer Science. Springer, Berlin, pp 291–300Google Scholar
  28. Wang L, Pan C (2011) Effective multi-resolution background subtraction. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 909–912Google Scholar
  29. White B, Shah M (2007) Automatically tuning background subtraction parameters using particle swarm optimization. In: 2007 IEEE International Conference on Multimedia and Expo, pp 1826–1829Google Scholar
  30. Yu X, Chen X, Zhang H (2011) Accurate motion detection in dynamic scenes based on ego-motion estimation and optical flow segmentation combined method. In: Photonics and Optoelectronics (SOPO), 2011 symposium on, pp 1–4Google Scholar
  31. Zhang E, Chen F, Zhang W (2006) A novel particle filter based background subtraction method. In: Computational intelligence and security, 2006 international conference on, vol 2, pp 1837–1840Google Scholar
  32. Zheng J, Wang Y, Nihan N, Hallenbeck E (2006) Extracting roadway background image: a mode based approach. J Transp Res Rep 1944:82–88Google Scholar
  33. Zivkovic Z, van der Heijden F (2006) Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognit Lett 27(7):773–780. doi: 10.1016/j.patrec.2005.11.005 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.MANITBhopalIndia

Personalised recommendations