# A new distributed algorithm for efficient generalized arc-consistency propagation

## Abstract

Generalized arc-consistency propagation is predominantly used in constraint solvers to efficiently prune the search space when solving constraint satisfaction problems. Although many practical applications can be modelled as distributed constraint satisfaction problems, no distributed arc-consistency algorithms so far have considered the privacy of individual agents. In this paper, we propose a new distributed arc-consistency algorithm, called \(\mathsf {DisAC3.1}\), which leaks less private information of agents than existing distributed arc-consistency algorithms. In particular, \(\mathsf {DisAC3.1}\) uses a novel termination determination mechanism, which allows the agents to share domains, constraints and communication addresses only with relevant agents. We further extend \(\mathsf {DisAC3.1}\) to \(\mathsf {DisGAC3.1}\), which is the first distributed algorithm that enforces generalized arc-consistency on *k*-ary (\(k\ge 2\)) constraint satisfaction problems. Theoretical analyses show that our algorithms are efficient in both time and space. Experiments also demonstrate that \(\mathsf {DisAC3.1}\) outperforms the state-of-the-art distributed arc-consistency algorithm and that \(\mathsf {DisGAC3.1}\) ’s performance scales linearly in the number of agents.

## Keywords

Distributed constraint satisfaction problems Generalized arc-consistency Privacy Termination detection## Notes

### Acknowledgements

The authors sincerely thank the anonymous reviewers of Autonomous Agents and Multi-Agent Systems for their very helpful comments. The work of SL was partially supported by NSFC (No. 11671244), and the work of JL was partially supported by the Alexander von Humboldt Foundation.

## References

- 1.Awerbuch, B., & Gallager, R. (1987). A new distributed algorithm to find breadth first search trees.
*IEEE Transactions on Information Theory*,*33*(3), 315–322.zbMATHCrossRefGoogle Scholar - 2.Baudot, B., & Deville, Y. (1997).
*Analysis of distributed arc-consistency algorithms*. Technical report, Université catholique de Louvain.Google Scholar - 3.Bessiere, C. (1994). Arc-consistency and arc-consistency again.
*Artificial Intelligence*,*65*(1), 179–190.MathSciNetCrossRefGoogle Scholar - 4.Bessiere, C., Freuder, E. C., & Régin, J. C. (1999). Using constraint metaknowledge to reduce arc consistency computation.
*Artificial Intelligence*,*107*(1), 125–148.MathSciNetzbMATHCrossRefGoogle Scholar - 5.Bessiere, C., Régin, J. C., Yap, R. H., & Zhang, Y. (2005). An optimal coarse-grained arc consistency algorithm.
*Artificial Intelligence*,*165*(2), 165–185.MathSciNetzbMATHCrossRefGoogle Scholar - 6.Boerkoel, J. C, Jr., & Durfee, E. H. (2013). Distributed reasoning for multiagent simple temporal problems.
*Journal of Artificial Intelligence Research*,*47*, 95–156.MathSciNetzbMATHCrossRefGoogle Scholar - 7.Chandy, K. M., & Misra, J. (1985). A paradigm for detecting quiescent properties in distributed computations. In K. R. Apt (Ed.),
*Logics and models of concurrent systems*(pp. 325–341). New York: Springer.CrossRefGoogle Scholar - 8.Chandy, K. M., & Lamport, L. (1985). Distributed snapshots: Determining global states of distributed systems.
*ACM Transactions on Computer Systems (TOCS)*,*3*(1), 63–75.CrossRefGoogle Scholar - 9.Chandy, K. M., & Misra, J. (1986). How processes learn.
*Distributed Computing*,*1*(1), 40–52.zbMATHCrossRefGoogle Scholar - 10.Chang, E. J. H. (1982). Echo algorithms: Depth parallel operations on general graphs.
*IEEE Transactions on Software Engineering*,*SE–8*(4), 391–401.CrossRefGoogle Scholar - 11.Conry, S. E., Kuwabara, K., Lesser, V. R., & Meyer, R. A. (1991). Multistage negotiation for distributed constraint satisfaction.
*IEEE Transactions on Systems, Man, and Cybernetics*,*21*(6), 1462–1477.zbMATHCrossRefGoogle Scholar - 12.Cooper, P. R., & Swain, M. J. (1992). Arc consistency: Parallelism and domain dependence.
*Artificial Intelligence*,*58*(1–3), 207–235.MathSciNetCrossRefGoogle Scholar - 13.Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal constraint networks.
*Artificial Intelligence*,*49*(1–3), 61–95.MathSciNetzbMATHCrossRefGoogle Scholar - 14.Dijkstra, E. W., Feijen, W. H., & Van Gasteren, A. M. (1986). Derivation of a termination detection algorithm for distributed computations.
*Information Processing Letters*,*16*(5), 217–219. https://doi.org/10.1016/0020-0190(83)90092-3.MathSciNetzbMATHCrossRefGoogle Scholar - 15.Dijkstra, E. W., & Scholten, C. S. (1980). Termination detection for diffusing computations.
*Information Processing Letters*,*11*(1), 1–4.MathSciNetzbMATHCrossRefGoogle Scholar - 16.Eriksen, O, & Skyum, S. (1985).
*Symmetric distributed termination*. DAIMI report series 14(189).Google Scholar - 17.Faltings, B., Léauté, T., & Petcu, A. (2008). Privacy guarantees through distributed constraint satisfaction. In
*2008 IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology*(Vol. 2, pp. 350–358).Google Scholar - 18.Grinshpoun, T. (2012). When you say (DCOP) privacy, what do you mean?—Categorization of DCOP privacy and insights on internal constraint privacy. In: J. Filipe, A. L. N. Fred (Eds.),
*ICAART 2012—Proceedings of the 4th international conference on agents and artificial intelligence*(Vol. 1, pp. 380–386)—Artificial Intelligence, Vilamoura, Algarve, Portugal, 6–8 February, 2012. SciTePress.Google Scholar - 19.Grinshpoun, T., & Tassa, T. (2016). P-syncbb: A privacy preserving branch and bound dcop algorithm.
*Journal of Artificial Intelligence Research*,*57*(1), 621–660.MathSciNetzbMATHCrossRefGoogle Scholar - 20.Gu, J., Sosic, R. (1991). A parallel architecture for constraint satisfaction. In:
*International conference on industrial and engineering applications of artificial intelligence and expert systems*(pp. 229–237).Google Scholar - 21.Hamadi, Y. (2002). Optimal distributed arc-consistency.
*Constraints*,*7*(3–4), 367–385.MathSciNetzbMATHCrossRefGoogle Scholar - 22.Hassine, A. B., & Ghedira, K. (2002). How to establish arc-consistency by reactive agents. In
*Proceedings of the 15th European conference on artificial intelligence*(pp. 156–160).Google Scholar - 23.Hassine, A. B., Ghedira, K., & Ho, T. B. (2004). New distributed filtering-consistency approach to general networks. In
*Proceedings of the 17th international conference on industrial and engineering applications of artificial intelligence and expert systems*(pp. 708–717).Google Scholar - 24.Huang, S. T. (1989). Detecting termination of distributed computations by external agents. In
*Proceedings of the 9th international conference on distributed computing systems*(pp. 79–84).Google Scholar - 25.Hubbe, P. D., & Freuder, E. C. (1992). An efficient cross product representation of the constraint satisfaction problem search space. In
*Proceedings of the tenth national conference on artificial intelligence*(pp. 421–427).Google Scholar - 26.Huffman, D. A. (1971). Impossible objects as nonsense sentences.
*Machine Intelligence*,*6*(1), 295–323.Google Scholar - 27.Huhns, M. N., & Bridgeland, D. M. (1991). Multiagent truth maintenance.
*IEEE Transactions on Systems, Man, and Cybernetics*,*21*(6), 1437–1445.CrossRefGoogle Scholar - 28.Kong, S., Lee, J. H., & Li, S. (2018). Multiagent simple temporal problem: The Arc-consistency approach. In
*Thirty-Second AAAI Conference on Artificial Intelligence*, AAAI’18. AAAI Press.Google Scholar - 29.Lai, T. H., & Wu, L. F. (1995). An (n -1)-resilient algorithm for distributed termination detection.
*IEEE Transactions on Parallel and Distributed Systems*,*6*(1), 63–78.CrossRefGoogle Scholar - 30.Léauté, T., & Faltings, B. (2013). Protecting privacy through distributed computation in multi-agent decision making.
*Journal of Artificial Intelligence Research*,*47*, 649–695.MathSciNetzbMATHCrossRefGoogle Scholar - 31.Li, S., Liu, W., & Wang, S. (2013). Qualitative constraint satisfaction problems: An extended framework with landmarks.
*Artificial Intelligence*,*201*, 32–58.MathSciNetzbMATHCrossRefGoogle Scholar - 32.Lynch, N. A. (1996).
*Distributed algorithms*. Burlington: Morgan Kaufmann.zbMATHGoogle Scholar - 33.Mackworth, A. K. (1977). Consistency in networks of relations.
*Artificial Intelligence*,*8*(1), 99–118.MathSciNetzbMATHCrossRefGoogle Scholar - 34.Maheswaran, R. T., Pearce, J. P., Bowring, E., Varakantham, P., & Tambe, M. (2006). Privacy loss in distributed constraint reasoning: A quantitative framework for analysis and its applications.
*Autonomous Agents and Multi-Agent Systems*,*13*(1), 27–60.CrossRefGoogle Scholar - 35.Maruyama, H. (1990). Structural disambiguation with constraint propagation. In
*ACL*(pp. 31–38).Google Scholar - 36.Mason, C. L., & Johnson, R. R. (1988).
*Datms: A framework for distributed assumption based reasoning*. Technical report, Lawrence Livermore National Lab., CA (USA).Google Scholar - 37.Matocha, J., & Camp, T. (1998). A taxonomy of distributed termination detection algorithms.
*Journal of Systems and Software*,*43*(3), 207–221.CrossRefGoogle Scholar - 38.Mattern, F. (1987). Algorithms for distributed termination detection.
*Distributed Computing*,*2*(3), 161–175.CrossRefGoogle Scholar - 39.Mayo, J., & Kearns, P. (1994). Distributed termination detection with roughly synchronized clocks.
*Information Processing Letters*,*52*(2), 105–108.CrossRefGoogle Scholar - 40.Meisels, A., & Zivan, R. (2007). Asynchronous forward-checking for discsps.
*Constraints*,*12*(1), 131–150.MathSciNetzbMATHCrossRefGoogle Scholar - 41.Mohr, R., & Henderson, T. C. (1986). Arc and path consistency revisited.
*Artificial Intelligence*,*28*(2), 225–233.CrossRefGoogle Scholar - 42.Montanari, U. (1974). Networks of constraints: Fundamental properties and applications to picture processing.
*Information Sciences*,*7*, 95–132.MathSciNetzbMATHCrossRefGoogle Scholar - 43.Nguyen, T., & Deville, Y. (1998). A distributed arc-consistency algorithm.
*Science of Computer Programming*,*30*(1–2), 227–250.MathSciNetzbMATHCrossRefGoogle Scholar - 44.Raynal, M. (2013). Distributed termination detection. In
*Distributed algorithms for message-passing systems*(pp. 367–399). Berlin: Springer.Google Scholar - 45.Samal, A., & Henderson, T. (1987). Parallel consistent labeling algorithms.
*International Journal of Parallel Programming*,*16*(5), 341–364.MathSciNetzbMATHCrossRefGoogle Scholar - 46.Savaux, J., Vion, J., Piechowiak, S., Mandiau, R., Matsui, T., Hirayama, K., Yokoo, M., Elmane, S., & Silaghi, M. (2016). DisCSPs with privacy recast as planning problems for self-interested agents. In
*2016 IEEE/WIC/ACM international conference on web intelligence (WI)*(pp. 359–366).Google Scholar - 47.Shavit, N., & Francez, N. (1986) A new approach to detection of locally indicative stability. In
*International colloquium on automata, languages, and programming*(pp. 344–358). Springer.Google Scholar - 48.Silaghi, M. (2002). A comparison of distributed constraint satisfaction approaches with respect to privacy. In
*In DCR*. Citeseer.Google Scholar - 49.Sultanik, E. A., Lass, R. N., & Regli, W .C. (2007). Dcopolis: A framework for simulating and deploying distributed constraint optimization algorithms. In
*Proceedings of the workshop on distributed constraint reasoning*.Google Scholar - 50.Sycara, K., Roth, S. F., Sadeh, N., & Fox, M. S. (1991). Distributed constrained heuristic search.
*IEEE Transactions on Systems, Man, and Cybernetics*,*21*(6), 1446–1461.CrossRefGoogle Scholar - 51.Topor, R. W. (1984). Termination detection for distributed computations.
*Information Processing Letters*,*18*(1), 33–36.CrossRefGoogle Scholar - 52.Venkatesan, S. (1989). Reliable protocols for distributed termination detection.
*IEEE Transactions on Reliability*,*38*(1), 103–110.CrossRefGoogle Scholar - 53.Wallace, R. J., & Freuder, E. C. (2005). Constraint-based reasoning and privacy/efficiency tradeoffs in multi-agent problem solving.
*Artificial Intelligence*,*161*(1), 209–227.MathSciNetzbMATHCrossRefGoogle Scholar - 54.Yokoo, M., Durfee, E. H., Ishida, T., & Kuwabara, K. (1998). The distributed constraint satisfaction problem: Formalization and algorithms.
*IEEE Transactions on Knowledge and Data Engineering*,*10*(5), 673–685.CrossRefGoogle Scholar - 55.Yokoo, M., & Hirayama, K. (2000). Algorithms for distributed constraint satisfaction: A review.
*Autonomous Agents and Multi-Agent Systems*,*3*(2), 185–207.CrossRefGoogle Scholar - 56.Yokoo, M., Suzuki, K., & Hirayama, K. (2005). Secure distributed constraint satisfaction: Reaching agreement without revealing private information.
*Artificial Intelligence*,*161*(1), 229–245.MathSciNetzbMATHCrossRefGoogle Scholar - 57.Zhang, Y., & Mackworth, A. K. (1991). Parallel and distributed algorithms for finite constraint satisfaction problems. In
*Proceedings of the 3th IEEE symposium on parallel and distributed processing*(pp. 394–397).Google Scholar - 58.Zhang, Y., & Yap, R. H. C. (2001). Making ac-3 an optimal algorithm. In
*Proceedings of the 17th international joint conference on artificial intelligence*(pp. 316–321).Google Scholar