Silvopastoral management of beef cattle production for neutralizing the environmental impact of enteric methane emission

  • Leonardo de Oliveira ResendeEmail author
  • Marcelo Dias Müller
  • Marta Moura Kohmann
  • Luís Fernando Guedes Pinto
  • Laury Cullen Junior
  • Sergio de Zen
  • Luiz Felipe Guanaes Rego


It is well recognized that commercial beef cattle production systems have a major impact on climate change, mainly due to the emission of enteric methane (CH4). The objective of this research was to evaluate if integrating animal + pasture + timber production in silvopastoral systems (SPS) would help neutralize the impact of enteric CH4 emission by facilitating carbon storage as soil organic carbon (SOC). This paper reports a study conducted in Brazil with a herd of 150 cows in 100 ha of Urochloa brizantha with Eucalyptus urograndis, on four tree configurations: SPS 1-clone GG-100 at 2 × 3 × 15 m spacing; SPS 2-clone i-144 at 2 × 3 × 15 m; SPS 3-clone GG-100 at 3 × 15 m; and SPS 4-clone i-144 at 3 × 15 m. Based on data collected through eight consecutive years, the gas balance was estimated. For all SPS treatments average, the carbon dioxide equivalent (CO2e) of additional C stock exceeded the emissions. Considering only C sequestration from trees, the average CO2e sequestration was − 26.27 Mg·CO2e ha−1, while the average emissions of CO2 e was 23.54 Mg·CO2e ha−1 for enteric CH4 + pasture + tree, giving a net balance of − 2.73 Mg·CO2e ha−1. The “loss” of CO2e analyzed was compensated by the soil C sequestration in long-lived SOC pools, enhancing the resilience of farming systems by increasing soil organic matter and soil fertility capacity, mitigating greenhouse gas emissions, therefore, providing benefits in livestock production and for environmental remediation.


Carbon sequestration Cattle emissions Greenhouse gases emission Silvopastoral systems Sustainable livestock 



  1. Almeida RG, de Andrade CMS, Paciullo DS, Fernandes PC, Cavalcante ACR, Barbosa RA, do Valle CB (2013) Brazilian agroforestry systems for cattle and sheep. Trop Grassl Forrajes Trop 1(2):175–183. CrossRefGoogle Scholar
  2. Alves FV, Almeida RG, Laura VA (2015) Documento 210—Carbon Neutral Brazilian Beef: a new concept for sustainable beef production in the tropics. Embrapa—Brazilian Agricultural Research Corporation—Ministry of Agriculture, Livestock, and Food Supply. BrasíliaGoogle Scholar
  3. Andrade HJ, Brook R, Ibrahim M (2008) Growth, production and carbon sequestration of silvopastoral systems with native timber species in the dry lowlands of Costa Rica. Plant Soil 308(1–2):11–22. CrossRefGoogle Scholar
  4. Castro CADO, Resende RT, Bhering LL, Cruz CD (2016) Brief history of Eucalyptus breeding in Brazil under perspective of biometric advances. Ciência Rural 46(9):1585–1593. CrossRefGoogle Scholar
  5. Dube F, Espinosa M, Stolpe NB, Zagal E, Thevathasan NV, Gordon AM (2012) Productivity and carbon storage in silvopastoral systems with Pinus ponderosa and Trifolium spp., plantations and pasture on an Andisol in Patagonia, Chile. Agrofor Syst 86(2):113–128. CrossRefGoogle Scholar
  6. Garnett T, Smith P, Nicholson W, Finch J (2016) Food systems and greenhouse gas emissions (Foodsource: chapters). Food Climate Research Network, University of OxfordGoogle Scholar
  7. Gatto A (2011) Carbon stock in the biomass of eucalyptus crops in central-east region of the state of Minas Gerais—Brazil. Rev Árvore 35(4):895–905. CrossRefGoogle Scholar
  8. GHG-Protocol Agriculture Guidance (2016) Interpreting the corporate accounting and reporting standard for the agricultural sector. World Resources InstituteGoogle Scholar
  9. Gouvello C, Soares Filho BS, Nassar A, Schaeffer R, Alves FJ, Alves JWS (2010) Brazil low carbon country case study. World Bank, Washington, DCGoogle Scholar
  10. Howlett DS, Mosquera-Losada MR, Nair PK, Nair VD, Rigueiro-Rodríguez A (2011) Soil carbon storage in silvopastoral systems and a treeless pasture in northwestern Spain. J Environ Qual 40(3):825–832CrossRefGoogle Scholar
  11. ICLF in numbers (2016) Integrated crop-livestock-forest (ICLF) in numbers. Embrapa—Brazilian Agricultural Research Corporation—Ministry of Agriculture, Livestock, and Food Supply. BrasíliaGoogle Scholar
  12. IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. In: Pachaur RK, Meyer LA (eds) IPCC, Geneva, Switzerland, Geneva, SwitzerlandGoogle Scholar
  13. Jorge DL (2014) Estimação Volumétrica de Árvores em Sistema Silvipastoril. Dissertation, Universidade Federal dos Vales do Jequitinhonha e MucuriGoogle Scholar
  14. Kaur B, Gupta SR, Singh G (2002) Carbon storage and nitrogen cycling in silvopastoral systems on a sodic in northwestern India. Agrofor Syst 54(1):21–29. CrossRefGoogle Scholar
  15. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263CrossRefGoogle Scholar
  16. Lal R (2004) Carbon emission from farm operations. Environ Int 30:981–990. CrossRefPubMedGoogle Scholar
  17. Loetsch F, Haller KE (1964) Forest inventory: V. 2 statistics of forest inventory and information from aerial photographs. BLV VerlagsgesellschaftGoogle Scholar
  18. Müller MD, Fernandes EM, Castro CRT, Paciullo DSC, Alves FF (2009) Estimate of biomass and carbon storage by an agrossilvipastoral system in the Zona da Mata. Pesqui Florest Bras 60:11–17Google Scholar
  19. Müller MD, Nogueira GS, Castro CRTD, Paciullo DSC, Alves FDF, Castro RVO, Fernandes EN (2011) Economic analysis of an agrosilvipastoral system for a mountainous area in Zona da Mata Mineira, Brazil. Embrapa—Brazilian Agricultural Research Corporation—Ministry of Agriculture, Livestock, and Food Supply. Brasília. CrossRefGoogle Scholar
  20. Nair PKR (1993) An introduction to agroforestry. Kluwer Academic, AmsterdamCrossRefGoogle Scholar
  21. Nair PKR (2014) Agroforestry: practices and systems. In: Van Alfen N (ed) Encyclopedia of agriculture and food systems, vol 1. Elsevier, San Diego, pp 270–282. CrossRefGoogle Scholar
  22. Nair PKR, Gordon AM, Mosquera-Losada MR (2008) Agroforestry. In: Jorgensen SE, Fath BD (eds) Encyclopedia of ecology. Elsevier, Oxford, pp 101–110CrossRefGoogle Scholar
  23. Nair PKR, Nair VD, Kumar BM, Haile SG (2009) Soil carbon sequestration in tropical agroforestry systems: a feasibility appraisal. Environ Sci Policy 12(8):1099–1111. CrossRefGoogle Scholar
  24. Nair PKR, Tonucci RG, Garcia R, Nair VD (2011) Silvopasture and carbon sequestration with special reference to the Brazilian Savanna (Cerrado). In: Kumar B, Nair P (eds) Carbon sequestration potential of agroforestry systems. Advances in agroforestry, vol 8. Springer, Dordrecht, pp 145–162. CrossRefGoogle Scholar
  25. Nair PKR, Viswanath S, Lubina PA (2017) Cinderella agroforestry systems. Agrofor Syst 91(5):901–917. CrossRefGoogle Scholar
  26. Neves CMND, Silva MLN, Curi N, Macedo RLG, Tokura AM (2004) Carbon stock in agricultural-forestry-pasture, planted pasture, and eucalyptus systems under conventional tillage in the northwestern region of the Minas Gerais State. Ciência e Agrotecnol 28(5):1038–1046. CrossRefGoogle Scholar
  27. Oliveira EB, Ribaski J, Zanetti EA, Penteado Junior JF (2008) Production, carbon and economical profitability of Pinuselliottii and Eucalyptusgrandis in Silvipastoris system in South Brazil. Pesqui Florest Bras 57(1):45–56Google Scholar
  28. Paixão FA, Soares CPB, Jacovine LAG, Silva ML, Leite HG, Silva GF (2006) Quantification of carbon stock and economic evaluation of management alternatives in a eucalypt plantation. Rev Árvore 30(3):411–420. CrossRefGoogle Scholar
  29. Reis GG (2006) Performance of Eucalyptus spp clones under different levels of soil water availability in the field, root and aboveground growth. Rev Árvore 30(6):921–931. CrossRefGoogle Scholar
  30. Rocha SJSS, Schettini BLS, Alves EBBM (2017) Carbon balance in three silvopastoral systems in the southeast of Brazil. Rev Espac 38(39):33Google Scholar
  31. Rockström J (2015) Bounding the planetary future: why we need a great transition. Great Transit Initiat 9:1–13Google Scholar
  32. Salton JC, Mielniczuk J, Bayer C, Fabrício AC, Macedo MCDM, Broch DL (2011) Contents and dynamics of soil carbon in integrated crop-livestock systems. Pesqui Agropecu Bras 46(10):1349–1356. CrossRefGoogle Scholar
  33. Savory AJ, Butterfield J (2016) Holistic management: a commonsense revolution to restore our environment. Island Press, WashingtonGoogle Scholar
  34. Schettini BLS, Jacovine LAG, Torres CMME, Oliveira Neto SN, Rocha SJSS, Alves EBBM, Villanova PH (2018) Estocagem de Carbono em Sistemas Silvipastoris com Diferentes Arranjos e Materiais Genéticos. Adv For Sci 4(4):175–179Google Scholar
  35. Schroth G, D’Angelo SA, Teixeira WG, Haag D, Lieberei R (2002) Conversion of secondary forest into agroforestry and monoculture plantations in Amazonia: consequences for biomass, litter and soil carbon stocks after 7 years. For Ecol Manag 163:131–150CrossRefGoogle Scholar
  36. Shepherd D, Montagnini F (2001) Above ground carbon sequestration potential in mixed and pure tree plantations in the humid tropics. J Trop For Sci 13:450–459Google Scholar
  37. Silva HD (1996) Modelos matemáticos para a estimativa da biomassa e do conteúdo de nutrientes em plantações de Eucaliptus grandis Hill (ex-maiden) em diferentes idades. Tese, Universidade Federal do ParanáGoogle Scholar
  38. Silveira ML, Xu S, Adewopo J, Inglett KS (2014) Land use intensification effects on soil C dynamics in subtropical grazing land ecosystems. Trop Grassl Forrajes Trop 2(1):142–144. CrossRefGoogle Scholar
  39. Soto-Pinto L, Anzueto M, Mendoza J, Ferrer GJ, de Jong B (2010) Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agrofor Syst 78(1):39. CrossRefGoogle Scholar
  40. Strassburg BB, Latawiec AE, Barioni LG, Nobre CA, Silva VP, Viana M, Valentim JF, Assad ED (2014) When enough should be enough: improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil. Glob Environ Change 28:84–97. CrossRefGoogle Scholar
  41. Tonucci RG, Nair PK, Nair VD, Garcia R, Bernardino FS (2011) Soil carbon storage in silvopasture and related land-use systems in the Brazilian Cerrado. J Environ Qual 40:833–841. CrossRefPubMedGoogle Scholar
  42. Torres CMME, Jacovine LAG, Oliveira Neto SN, Fraisse CW, Soares CPB, Castro Neto F, Ferreira LR, Zanuncio JC, Lemes PG (2017) Greenhouse gas emissions and carbon sequestration by agroforestry systems in southeastern Brazil. Springer Nat J Sci Rep 7:16738. CrossRefGoogle Scholar
  43. Tsukamoto Filho ADA, Couto L, Neves JCL, Passos CAM, Silva MD (2004) Fixação de carbono em um sistema agrissilvipastoril com eucalipto na região do cerrado de Minas Gerais. Rev Agrossilvicultura 1(1):29–41Google Scholar
  44. Vermeulen SJ, Campbell BM, Ingram JS (2012) Climate change and food systems. Annu Rev Environ Resour. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Leonardo de Oliveira Resende
    • 1
    Email author
  • Marcelo Dias Müller
    • 2
  • Marta Moura Kohmann
    • 3
  • Luís Fernando Guedes Pinto
    • 4
  • Laury Cullen Junior
    • 5
  • Sergio de Zen
    • 6
  • Luiz Felipe Guanaes Rego
    • 1
  1. 1.Geography DepartmentPontifical Catholic University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.Brazilian Agricultural Research Corporation - EmbrapaJuiz de ForaBrazil
  3. 3.Range Cattle Research and Education CenterUniversity of FloridaOnaUSA
  4. 4.ImafloraPiracicabaBrazil
  5. 5.Institutto IpêNazaré PaulistaBrazil
  6. 6.Pontifical Catholic University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations