Advertisement

Shade controls the ruminating and idleness times of dairy heifers in tropical integrated systems

  • Roberta Aparecida CarnevalliEmail author
  • Andréia Cristina Tavares de Mello
  • Admar Júnior Coletti
  • Larissa Fernanda Garcia
  • Diego Batista Xavier
Article

Abstract

Livestock production has migrated to the Midwest region of Brazil; however, these regions are environmentally unsuitable for livestock specializing in milk production, due to high temperatures. This environment can be improved using inserting trees into the pastures. The objective was to evaluate the effects of adding grazing trees on the behavior of dairy heifers in the Midwest region of Brazil. Piatã grass was managed in: open pasture system, OPS (shade level 0%), the worst treatment for animal production since the solar radiation and temperature are deleterious to animal welfare; moderate shade system (shade level 20%), the supposed adequate system where the animals find shady areas, but there is light available for photosynthesis; and intensive shade system (shade level 70%), the worst treatment for vegetal production since the light is limited for grass growth. Shade was provided by Eucalyptus trees. Heifer behavior was evaluated from 08:30 to 16:00 over three periods. In the OPS, the heifers searched for cow drinkers and remained there for a long time, refreshing themselves by floating in water and muddy places. Heifers demonstrated a behavior of attempting to return to grazing activity under the OPS during the hottest time of the day, but without success. Ruminating activity was not affected by any factor. The shade level affected the distribution of time spent on an activity and the time of day at which each activity happened. The moderate shade level is enough to ensure stability in the daily behavior of dairy heifers.

Keywords

Silvopastoral Urochloa brizantha Eucalyptus Animal behavior 

Notes

Acknowledgements

The authors express their gratitude to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES Foundation), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Foundation) and Empresa Brasileira de Pesquisa Agropecuária (Embrapa) for funding this research.

Authors’ contributions

Roberta Aparecida Carnevalli conceived and designed experiments, got funding, implemented experimental area, trained students, analyzed data, and wrote the paper; Andrea Cristina Tavares de Mello carried out field experiments, processed, and analyzed data, and defended her master’s degree; Larissa Fernanda Garcia, Admar Junior Coletti, and Diego Batista Xavier helped in conducting the experiment and collecting data. All authors critically revised the manuscript and approved of the final version.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

References

  1. Agritempo (2018) Sistema de Monitoramento Agrometeorológico. https://www.agritempo.gov.br/agritempo/jsp/Grafico/graficoEstacao.jsp?siglaUF=MT. Accessed 3 Sept 2018
  2. Albright JL, Arave CW (1997) The behaviour of cattle, 1st edn. CAB International, WallingfordGoogle Scholar
  3. Alvares CA, Stape JL, Sentelhas PC, Moraes Gonçalves JL, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22(6):711–728.  https://doi.org/10.1127/0941-2948/2013/0507 CrossRefGoogle Scholar
  4. Anderson GW, Moore RW, Jenkins PJ (1988) The integration of pasture, livestock and widely-space pine in South West Western Australia. Agrofor Syst 6(1):195–211CrossRefGoogle Scholar
  5. Blackshaw JK, Blackshaw AW (1994) Heat stress in cattle and the effect of shade on production and behavior: a review. Aust J Exp Agric 34(2):285–295.  https://doi.org/10.1071/ea9940285 CrossRefGoogle Scholar
  6. Carnevalli RA, Silva SC, Oliveira AA et al (2006) Herbage production and grazing losses in Panicum maximum cv. Mombaça pastures under four grazing managements. Trop Grassl 40(3):165–176Google Scholar
  7. Carvalho MM (1998) Arborização de pastagens cultivadas. EMBRAPA-CNPGL, Juiz de Fora (Portuguese) Google Scholar
  8. Carvalho PF, Trindade JS, Silva SC, Bremm C, Mezzalira J, Nabinger C, Amaral M, Carassai IJ, Martins R, Genro T et al (2009) Consumo de forragem por animais em pastejo: analogias e simulações em pastoreio rotativo. In: da Silva SC et al (eds) Simpósio sobre manejo da pastagem. FEALQ, Piracicaba (Portuguese) Google Scholar
  9. Dias-Filho MB (2011) Os desafios da produção animal em pastagens na fronteira agrícola brasileira. Rev Bras Zootec 40:243–252 (Portuguese) Google Scholar
  10. Dias-Filho MB (2013) Recuperação de pastagens e segurança alimentar: uma abordagem histórica da pecuária na Amazônia. Editora Scot Consultoria, Bebedouro (Portuguese) Google Scholar
  11. Dias-Filho MB (2014) Diagnóstico das pastagens no Brasil. Embrapa Amazônia Oriental, Belém (Portuguese) Google Scholar
  12. EMBRAPA—EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA (2015) Sistemas Agroflorestais: a Agropecuária Sustentável. Brasília. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/120048/1/Sistemas-Agroflorestais-livro-em-baixa.pdf (Portuguese)
  13. Ferreira LCB, Machado Filho LCP, Hoetzel MJ, Labarrère JG (2011) O efeito de diferentes disponibilidades de sombreamento na dispersão das fezes dos bovinos nas pastagens. Rev Bras Agroecol 6(1):137–146 (Portuguese) Google Scholar
  14. Geraldo ACAPM, Pereira AMF, Titto CG (2012) What do cattle prefer in a tropical climate: water immersion or artificial shade? J Life Sci 2012(6):1356–1362.  https://doi.org/10.17265/1934-7391/2012.12.007 CrossRefGoogle Scholar
  15. IBGE—Instituto Brasileiro de Geografia e Estatística (2019). https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9209-pesquisa-trimestral-do-leite.html?=&t=resultados. Accessed 16 Oct 2019
  16. Kadzere CT, Murphy MR, Silanikove N, Maltz E (2001) Heat stress in lactating dairy cows: a review. Livest Product Sci 77(1):59–91.  https://doi.org/10.1016/S0301-6226(01)00330-X CrossRefGoogle Scholar
  17. Magalhães J, Townsend CR, Costa NL, Pereira RGA (2006) Determination of cattle and buffaloes heat tolerance on the humid tropics. In: Congresso Brasileiro de Biometeorologia, vol 4, issue 1. Ribeirão Preto, SP, p 6 (Portuguese, with abstract in English) Google Scholar
  18. Mello ACT, Carnevalli RA, Shiratsuchi LS, Pedreira BC, Lopes LB, Xavier DB (2017) Improved grazing activity of dairy heifers in shaded tropical grasslands. Ciênc Rural 47(2):1–7.  https://doi.org/10.1590/0103-8478cr20160316 CrossRefGoogle Scholar
  19. Montagnini F (1992) Sistemas agroflorestales: principios y aplicaciones en los tropicos, 2nd edn. Organización para Estudios Tropicales, San JoseGoogle Scholar
  20. Moore KJ, Dixon PM (2015) Analysis of combined experiments revisited. Agron J 107(02):763–771.  https://doi.org/10.2134/agronj13.0485 CrossRefGoogle Scholar
  21. Muller CJC, Botha JA, Smith WA (1994) Effect of shade on various parameters of Friesian cows in a Mediterranean climate in South-Africa: 3 behavior. South African. J Anim Sci 24(2):61–66Google Scholar
  22. Palacio S, Bergeron R, Lacharge S, Vasseur E (2015) The effects of providing portable shade at pasture on dairy cow behavior and physiology. J Dairy Sci 98(9):6085–6093CrossRefPubMedGoogle Scholar
  23. Payne WJA (1985) A review of the possibilities for integrating cattle and tree crop production systems in the tropics. For Ecol Manag 12:1–36CrossRefGoogle Scholar
  24. Pezo D, Ibrahim M (1998) Sistemas silvipastoriles. CATIE, Proyecto Agroflorestal CATIE/GTZ, Costa Rica (Spanish) Google Scholar
  25. Phillips CJC (1993) Cattle behavior, 1st edn. Farming Press Books, IpswishGoogle Scholar
  26. Pires MFÁ, Vilela D, Verneque RS, Teodoro RL (1998) Reflexos do estresse térmico no comportamento de vacas em lactação. In: Simpósio Brasileiro de Ambiência na Produção de Leite, 1. FEALQ, Piracicaba, pp 68–102Google Scholar
  27. SAS Institute (2012) Statistical analysis system: user guide [CD-ROM]. Version 9.2. SAS Institute Inc, CaryGoogle Scholar
  28. Schutz KE, Rogers AR, Poulouin YA, Cox NR, Tucker CB (2010) The amount of shade influences the behavior and physiology of dairy cattle. J Dairy Sci 93(1):125–133.  https://doi.org/10.3168/jds.2009-2416 CrossRefPubMedGoogle Scholar
  29. Shultz TA (1984) Weather and shade effects on cow corral activities. J Dairy Sci 67(4):868–873CrossRefPubMedGoogle Scholar
  30. Soares AB, Sartor LR, Adami PF, Varella AC, Fonseca L, Mezzalira JC (2009) Influência da luminosidade no comportamento de onze espécies forrageiras perenes de verão. Rev Bras Zootec 38(3):443–451 (Portuguese) CrossRefGoogle Scholar
  31. Souza W, Barbosa OR, Marques JA, Gasparino E, Cecato U, Barbero LM (2010) Behavior of beef cattle in silvipastoral systems with eucalyptus. Rev Bras Zootec 39(3):677–684.  https://doi.org/10.1590/s1516-35982010000300029 CrossRefGoogle Scholar
  32. Tapki I, Sahin A (2006) Comparison of the thermoregulatory behaviors of low and high producing dairy cows in a hot environment. Appl Anim Behav Sci 99(1–2):1–11.  https://doi.org/10.1016/j.applanim.2005.10.003 CrossRefGoogle Scholar
  33. Veiga JB, Tourrand JF, Quanz D (1996) A pecuária na fronteira agrícola da Amazônia: O caso do município de Uruará, PA, região da Transamazônica. Embrapa-CPATU, Belém (Portuguese) Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.EMBRAPA AgrossilvipastorilSinopBrazil
  2. 2.Universidade Federal de Mato GrossoSinopBrazil

Personalised recommendations