Advertisement

Quassia amara L. diameter and total height under different light conditions: implications for the management of agroecosystems

  • Joana A. PauloEmail author
  • Roger Villalobos
Article

Abstract

Quassia amara L. is a semi-sciophyte species that can be found growing as a large shrub or a small tree in Neotropical rainforests. It is traditionally harvested as a non-wood forest product for culinary, medicinal and insecticidal uses. Lack of knowledge on the ecological conditions that support tree growth limits the development of sustainable forest management plans of natural forests and the development of new agroecological cultivation models. The overall objectives of the present work are to (1) compare the Quassia amara L. growth in different forest structures; (2) evaluate the impact of light conditions on Quassia amara L. diameter growth, total height growth and height–diameter relationship and (3) discuss implications for the sustainable management of the species in agroecosystems. Light conditions are characterized at the tree level by the crown illumination index (cii), which is a visual and ordinal index. Results show that tree growth varies between plots with different forest structures and light conditions. The cii was able to characterize light conditions. Best light conditions were different for diameter and total height growth: cii value of 5.0 (tree crown completely exposed to overhead and lateral direct light) and cii value of 3.5 (tree crown exposed to some vertical/overhead direct light and low direct light), respectively. The cii did not affect the height–diameter relationship. A value of cii equal to 4 was found as an intermediate condition and recommended for the establishment of new agroecosystems including the Quassia amara L.

Keywords

Agroforestry Bitter wood Crown illumination index Mixed forests Non-wood forest product Light condition Simaroubaceae Costa Rica 

Notes

Acknowledgements

Authors acknowledge researchers and officials of the old Project Conservation for Sustainable Development in Central America, of CATIE, which contributed to the establishment and measurement of research spaces on Quassia amara L., in particular: Dr. Daniel Marmillod, Rafael Ocampo, Lilibeth Leigue, Juan Carlos Barrantes, José Masís, Francisco Ling. Authors acknowledge Inês Balsa for her contribution on the design of the graphical abstract. This work was supported by SuFORun Marie Skodowska-Curie Research and Innovation Staff Exchange project (H2020-MSCA-RISE-2015) and contract SFRH/BPD/96475/2013 established with Fundação para a Ciência e Tecnologia (Portugal). Centro de Estudos Florestais is a research unit supported by Fundação para a Ciência e Tecnologia (Portugal) under contract UID/AGR/00239/2019.

Author contributions

JAP contributed to methodology establishment; data analysis; modelling; paper writing. RV contributed to data collection; data analysis; paper revision.

References

  1. Almeida A, Tomé M (2010) Field sampling of cork value before extraction in Portuguese ‘montados’. Agrofor Syst 79:419–430.  https://doi.org/10.1007/s10457-009-9260-8 CrossRefGoogle Scholar
  2. Altieri MA (2002) Agroecology: the science of natural resource management for poor farmers in marginal environments. Agric Ecosyst Environ 93(1–3):1–24.  https://doi.org/10.1016/S0167-8809(02)00085-3 CrossRefGoogle Scholar
  3. Bellingham PJ, Tanner EVJ (2006) The influence of topography on tree growth, mortality, and recruitment in a tropical montane forest. Biotropica 32:378–384.  https://doi.org/10.1111/j.1744-7429.2000.tb00484.x CrossRefGoogle Scholar
  4. Bertani S, Houel E, Stien D, Chevolot L, Jullian V, Garavito G, Bourdy G, Deharo E (2006) Simalikalactone D is responsible for the antimalarial properties of an Amazonian traditional remedy made with Quassia amara L. (Simaroubaceae). J Ethnopharmacol 108(1):155–157CrossRefPubMedGoogle Scholar
  5. Brown NR (1995) The autecology and agroforesty potential of the bitterwood tree Quassia amara L. ex. Blom (Simaroubaceae). PhD thesis. Cornell UniversityGoogle Scholar
  6. Burkhart HE, Tomé M (2012) Modeling forest trees and stands. Springer, Berlin, p 457CrossRefGoogle Scholar
  7. Burlando B, Cornara L (2017) Revisiting Amazonian plants for skin care and disease. Cosmetics 4(3):25.  https://doi.org/10.3390/cosmetics4030025 CrossRefGoogle Scholar
  8. Castilho VC, Magnusson WE, Araújo RNO, Luizão RCC, Luizão FJ, Lima AP, Higuchi N (2006) Variation in aboveground tree live biomass in a central Amazonian Forest: effects of soil and topography. For Ecol Manag 234(1):85–96.  https://doi.org/10.1016/j.foreco.2006.06.024 CrossRefGoogle Scholar
  9. Chazdon RL, Guariguata MR (2016) Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges. Biotropica 48(6):716–730.  https://doi.org/10.1111/btp.12381 CrossRefGoogle Scholar
  10. Cifuentes MF (1996) Distribución espacial y potencial de aprovechamiento de Quassia amara L. (Simaroubaceae) en Río San Juan, Nicaragua. BsC thesis. Instituto Tecnologico de Costa Rica. Departamento de Ingenieria Forestal. Cartago. Costa RicaGoogle Scholar
  11. Clark DA, Clark DB (1992) Life history diversity of canopy and emergent trees in a neotropical rain forest. Ecol Monogr 62(3):315–344CrossRefGoogle Scholar
  12. Clark DA, Clark DB (1999) Assessing the growth of tropical rain forest trees: issues for forest modeling and management. Ecol Appl 9(3):981–997CrossRefGoogle Scholar
  13. Croat T (1978) Flora of Barro Colorado. Standford University Press, Standford, p 956Google Scholar
  14. Crouzeilles R, Ferreira MS, Chazdon RL, Lindenmayer DB, Sansevero JB, Monteiro L, Iribarrem A, Latawiec AE, Strassburg BBN (2017) Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Appl Ecol 3(11):e1701345.  https://doi.org/10.1126/sciadv.1701345 CrossRefGoogle Scholar
  15. Dawkins HC, Philip MS (1998) Tropical moist forest silviculture and management: a history of success and failure. CAB International, Wallingford, p 377Google Scholar
  16. Dhakal P, Paudel DR, Baral DR (2016) Inventory of non-timber forest products in Western Nepal and strategies for sustainable management. Int J Environ 5(3):87–103CrossRefGoogle Scholar
  17. FAO (1995) Non-wood forest products for rural income and sustainable forestry. Non-wood forest products 7. ISBN 92-5-103765-5. http://www.mekonginfo.org/assets/midocs/0001410-environment-non-wood-forest-products-for-rural-income-and-sustainable-forestry.pdf. Accessed 25 Aug 2019
  18. Guariguata MR, García-Fernández C, Sheil D, Nasi R, Herrero-Jáuregui C, Cronkleton P, Ingrama V (2010) Compatibility of timber and non-timber forest product management in natural tropical forests: perspectives, challenges, and opportunities. For Ecol Manag 259(3):237–245.  https://doi.org/10.1016/j.foreco.2009.11.013 CrossRefGoogle Scholar
  19. Haggar JP, Briscoe CB, Butterfield RP (1998) Native species: a resource for the diversification of forestry production in the lowland humid tropics. For Ecol Manag 106(2–3):195–203.  https://doi.org/10.1016/S0378-1127(97)00311-3 CrossRefGoogle Scholar
  20. Houel E, Bertani S, Bourdy G, Deharo E, Jullian V, Valentin A, Chevalley S, Stien D (2009) Quassinoid constituents of Quassia amara L. leaf herbal tea. Impact on its antimalarial activity and cytotoxicity. J Ethnopharmacol 126(1):114–118CrossRefPubMedGoogle Scholar
  21. Huang S, Price D, Titus S (2000) Development of ecoregion-based height-diameter models for white spruce in boreal forests. For Ecol Manag 129:125–141CrossRefGoogle Scholar
  22. IUSS Working Group WRB (2006) World reference base for soil resources 2006, 2nd edn. World soil resources reports no. 103, FAO, RomeGoogle Scholar
  23. Keeling HC, Phillips OL (2007) A calibration method for the crown illumination index for assessing forest light environments. For Ecol Manag 242:431–437.  https://doi.org/10.1016/j.foreco.2007.01.060 CrossRefGoogle Scholar
  24. Leigue L (1997) Ecological elements for silviculture of Quassia amara in Talamanca, Costa Rica. Master thesis. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Turrialba. Costa Rica. http://hdl.handle.net/11554/4829. Accessed 25 Aug 2019
  25. Ludvig A, Tahvanainen V, Dickson A, Evard C, Kurttila M, Cosovic M, Chapman E, Wilding M, Weiss G (2016) The practice of entrepreneurship in the non-wood forest products sector: support for innovation on private forest land. For Policy Econ 66:31–37.  https://doi.org/10.1016/j.forpol.2016.02.007 CrossRefGoogle Scholar
  26. Marmillod D, Chang Y, Bedoya R (1995) Plan de aprovechamiento sostenible de Quassia amara em la Reserva Indigena de Kekoldi. In: Ocampo RA (ed) Potencial de Quassia amara como insecticida natural. Coleccion diversidade biológica y desarrolo sustentable. IV. Metodologías. Serie Técnica. Informe Técnico nº 267. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Proyeto Conservación para el Desarrollo Sostenible em América Central (Olafo). Turrialba, Costa RicaGoogle Scholar
  27. Ministerio del Ambiente y Energía (2013) Serie e brillo solar en Cota Rica. Instituto Meteorológico Nacional. https://www.imn.ac.cr/documents/10179/20909/Series+de+Brillo+Solar+en+Costa+Rica. Accessed 25 Aug 2019
  28. Nair PKR, Latt CR (1998) Directions in tropical agroforestry research. Forestry sciences, vol 53. Springer, Dordrecht.  https://doi.org/10.1007/978-94-015-9008-2_10 CrossRefGoogle Scholar
  29. Ocampo RA (1995) Potencial de Quassia amara como insecticida natural. Coleccion diversidade biológica y desarrolo sustentable. IV. Metodologías. Serie Técnica. Informe Técnico nº 267. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Proyeto Conservación para el Desarrollo Sostenible em América Central (Olafo). Turrialba. Costa RicaGoogle Scholar
  30. Ocampo R, Balick MJ (2009) Plants of Semillas Sagradas: An Ethnomedicinal Garden in Costa Rica. Finca Luna Nueva Extractos, San Carlos, p 109Google Scholar
  31. Ocampo R, Rojas RD (2006) Cultivo, conservación e industrialización del hombre grande (Quassia amara). Bougainvillea, San José, p 70Google Scholar
  32. Painkra M, Dutta J, Ranga MM (2017) Status survey of non wood forest products in Surgujadistrict of Chhattisgarh: India. Appl For Ecol 5(2):20–27Google Scholar
  33. Paulo JA, Tomé J, Tomé M (2011) Nonlinear fixed and random generalized height-diameter models for Portuguese cork oak stands. Ann For Sci 68:295–309CrossRefGoogle Scholar
  34. Picard N (2019) Asymmetric competition can shape the size distribution of trees in a natural tropical forest. For Sci.  https://doi.org/10.1093/forsci/fxz018 CrossRefGoogle Scholar
  35. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-Plus. Statistics and computing series. Springer, New York, p 528Google Scholar
  36. Pullanikkatil D, Shackleton CM (2019) Poverty reduction strategies and non-timber forest products. In: Pullanikkatil D, Shackleton C (eds) Poverty reduction through non-timber forest products. Sustainable development goals series. Springer, Cham.  https://doi.org/10.1007/978-3-319-75580-9_1 CrossRefGoogle Scholar
  37. Rosskopf E, Morhart C, Nahm M (2017) Modelling shadow using 3D tree models in high spatial and temporal resolution. Remote Sens 9(7):719.  https://doi.org/10.3390/rs9070719 CrossRefGoogle Scholar
  38. Salazar-Dıaz R, Tixier P (2019) Effect of plant diversity on income generated by agroforestry systems in Talamanca, Costa Rica. Agrofor Syst 93:571–580.  https://doi.org/10.1007/s10457-017-0151-0 CrossRefGoogle Scholar
  39. SAS Institute Inc (2011) Introduction to regression procedures (chapter). SAS/STAT 93 user’s guide. SAS Institute Inc, Cary, p 50Google Scholar
  40. Sedjo RA, Botkin D (2010) Using foret plantations to spare natural forests. Environ Sci Policy Sustain Dev 39(10):14–30.  https://doi.org/10.1080/00139159709604776 CrossRefGoogle Scholar
  41. Shackleton CM, Pandey AK (2014) Positioning non-timber forest products on the development agenda. For Policy Econ 38:1–7.  https://doi.org/10.1016/j.forpol.2013.07.004 CrossRefGoogle Scholar
  42. Shackleton S, Shackleton CM, Shanley P (2011) Non-timber forest products in the global context. Tropical forestry, vol 7. Springer, Berlin.  https://doi.org/10.1007/978-3-642-17983-9 CrossRefGoogle Scholar
  43. Silva SR, Buitrón X, Oliveira LH, Martins MV (2001) Plantas medicinales de Brasil: Aspectos generales sobre legislación y comercio. Quito, EcuadorGoogle Scholar
  44. Solano J (1992) Características Básicas del Período Seco en la Vertiente del Pacífico de Costa Rica. Tesis para optar al grado de Licenciatura en Geografía. Escuela de Ciencias Geográficas. Universidad Nacional de Costa Rica. In: Solano J, Villalobos R (eds) Regione y subregione climáticas de Costa Rica. Instituto Meteorológico Nacional. https://www.imn.ac.cr/documents/10179/20909/Regionalizaci%C3%B3n+clim%C3%A1tica+de+Costa+Rica. Accessed 25 Aug 2019
  45. Tomé M, Barreiro S, Paulo JA, Tomé J (2006) Modelling tree and stand growth with growth functions formulated as age independent difference equations. Can J For Res 36(7):1621–1630.  https://doi.org/10.1139/X06-065 CrossRefGoogle Scholar
  46. Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Hölscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E, Wanger TC (2011) Multifunctional shade-tree management in tropical agroforestry landscapes—a review. J Appl Ecol 48:619–629CrossRefGoogle Scholar
  47. Valle GRR, Barbosa KO, Villalobos R (2000) Evaluación de los productos forestales no madereros en América Central. In: FAO (ed) Evaluation de los recursos forestales mundiales 2000. Evaluación de los productos forestales no madereros en América Central. Programa de Evaluación de los Recursos Forestales. Forest Resources Assessment Wp 22. http://www.fao.org/3/ae159s/ae159s00.htm
  48. Vanclay JK (1994) Modelling forest growth and yield: applications to mixed tropical forests. CAB International, WallingfordGoogle Scholar
  49. Villalobos RS (1995) Distribución de Quassia amara L. ex Blom en Costa Rica, y su relación com los contenidos de cuasina y neocuasina (insecticidas naturales) en sus tejidos. Master thesis. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Turrialba. Costa Rica. http://hdl.handle.net/11554/4806. Accessed 25 Aug 2019
  50. Wong JLG, Thornber K, Baker N (2001) Resource assessment of non-wood forest products: experience and biometric principles, vol 1. Food and Agriculture Organization of the United Nations, Rome, p 109Google Scholar
  51. Zeide B (1993) Analysis of growth equations. For Sci 39(3):594–616.  https://doi.org/10.1093/forestscience/39.3.594 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Centro de Estudos FlorestaisInstituto Superior de Agronomia (ISA), Universidade de LisboaLisbonPortugal
  2. 2.Programa Bosques, Biodiversidad y cambio climáticoCentro Agronómico Tropical de Investigación y Enseñanza (CATIE)TurrialbaCosta Rica

Personalised recommendations