Advertisement

Chemical composition, and in vitro fermentation of ripe mango silage with molasses

  • Paulino Sánchez-Santillán
  • Jerónimo Herrera-Pérez
  • Nicolás Torres-SaladoEmail author
  • Isaac Almaraz-Buendía
  • Iván Reyes-Vázquez
  • Adelaido Rafael Rojas-García
  • Marcelino Gómez-Trinidad
  • Edgar Octavio Contreras-Ramírez
  • María de los Ángeles Maldonado-Peralta
  • Filiberto Magadan-Olmedo
Article
  • 7 Downloads

Abstract

The objective was to evaluate the in vitro fermentation in silage of ripe mango with pangola grass hay and levels of sugar cane molasses as additive. The treatments were: 0 (T0%), 3 (T3%), 6 (T6%) and 9% (T9%) molasses. The ensilage was fermented for 21 days. Dry matter (DM), pH values, lactic acid, crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), and ashes (As), partial and the accumulated biogas and methane production, DM degradation (DMD) and NDF degradation (NDFD) were determined in the ensilages. Variables were analyzed in a completely random design. T0% showed lower DM and As content, as well as a higher lactic acid concentration. T3% and T6% had different CP content. The higher NDF and ADF content was found in T0% and T3%. With regard to partial biogas production, T0% had the higher partial biogas production at 6 h, while T3% and T6% had the higher production at 9 and 48 h; meanwhile, T0% and T3% had the higher production at 24 h, and T9% at 72 h. The higher partial methane production happened in T0% at 48 h and in T3% and T9% at 72 h. T0% and T3% had a higher DMD and NDFD. The lower accumulated biogas production took place in T3% and T6% (p < 0.05). Therefore, ripe mango ensilages (using pangola grass) do not require an additive (such as molasses) to improve the bromatological and fermented quality of the ensilage.

Keywords

Molasses Ensilage Mango In vitro Pangola 

Notes

Acknowledgements

The authors are grateful to the Academic Body UAGro-CA-183 “Producción Sustentable de Rumiantes en el Trópico” of the Universidad Autónoma de Guerrero, Mexico.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ajila CM, Bhat SG, Prasada UJS (2007) Valuable components of raw and ripe peels from two Indian mango varieties. Food Chem 102:1006–1011.  https://doi.org/10.1016/j.foodchem.2006.06.036 CrossRefGoogle Scholar
  2. Anaya-Reza O, López-Arenas T (2018) Design of a sustainable biorefinery for the production of lactic acid from sugarcane molasses. Rev Mex Ing Quím 17(01):243–259.  https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/Anaya CrossRefGoogle Scholar
  3. Antolín DM, González RM, Goñi CS, Domínguez VIA, Ariciaga GC (2009) Rendimiento y producción de gas in vitro de maíces híbridos conservados por ensilaje o henificado. Tec Pecu Méx 47(4):413–423Google Scholar
  4. AOAC (2005) Official methods of analysis. EUA, WashingtonGoogle Scholar
  5. Aragadvay-Yungán RG, Rayas AAA, Heredia-Nava D, Estrada-Flores JG, Martínez-Castañeda FE, Arriaga-Jordán CM (2015) Evaluación in vitro del ensilaje de girasol (Helianthus annuus L.) solo y combinado con ensilaje de maíz. Rev Mex Cienc Pecu 6(3):315–327.  https://doi.org/10.22319/rmcp.v6i3.4094 Google Scholar
  6. Araiza-Rosales E, Delgado-Licón E, Carrete-Carreón F, Medrano-Roldán H, Solís-Soto A, Rosales-Serna R, Urban C (2015) Calidad fermentativa y nutricional de ensilados de maíz complementados con manzana y melaza. Eco Rec Agrop 2(6):255–267.  https://doi.org/10.19136/era.a2n6.838 Google Scholar
  7. Araujo RC, Pires AV, Mourão GB, Abdalla AL, Sallam SMA (2011) Use of blanks to determine in vitro net gas and methane production when using rumen fermentation modifiers. Anim Feed Sci Technol 166–167:155–162.  https://doi.org/10.1016/j.anifeedsci.2011.04.009 CrossRefGoogle Scholar
  8. Baytok E, Aksu T, Karsli MA, Muruz H (2005) The effects of formic acid, molasses and inoculant as silage additives on corn silage composition and ruminal fermentation characteristics in sheep. Turk J Vet Anim Sci 29(2):469–474Google Scholar
  9. Bezabih M, Tamir B (2014) Silage additives: review. OJAppS 4(5):258–274.  https://doi.org/10.4236/ojapps.2014.45026 CrossRefGoogle Scholar
  10. Bolson KK, Ashbell G, Weinberg ZG (1996) Silage fermentation and silage additives review. Asian-Australas J Anim Sci 9(5):483–494.  https://doi.org/10.5713/ajas.1996.483 CrossRefGoogle Scholar
  11. Caicedo W, Rodríguez R, Lezcano P, Ly J, Valle S, Flores L, Ferreira F (2015) Chemical composition and in vitro digestibility of silages of taro (Colocasia esculenta (L.) Schott) tubers for feeding pigs. Cuban J Agric Sci 49(1):59–64Google Scholar
  12. Castillo JM, Rojas-Bourrillón A, WingChing-Jones R (2009) Valor nutricional del ensilaje de maíz cultivado en asocio con vigna (Vigna radiata). Agron Costarric 33(1):133–146Google Scholar
  13. Cavallini J, Gil V, Ojeda A (2015) Effect of ripening stage and presentation form on chemical composition and in vitro digestibility of mango fruit (Mangifera indica L.). LRRD. http://www.lrrd.org/lrrd27/4/cava27059.html. Accessed 22 June 2018
  14. Chanthakhoun V, Wanapat M, Kongmun P, Cherdthong A (2012) Comparison of ruminal fermentation characteristics and microbial population in swamp buffalo and cattle. Livest Sci 143:172–176.  https://doi.org/10.1016/j.livsci.2011.09.009 CrossRefGoogle Scholar
  15. Christensen RG, Eun JS, Yang SY, Min BR, MacAdam JW (2016) In vitro effects of birdsfoot trefoil (Lotus corniculatus L.) pasture on ruminal fermentation, microbial population, and methane production. Prof Anim Sci 33(4):451–460.  https://doi.org/10.15232/pas.2016-01558 CrossRefGoogle Scholar
  16. De Haro J, Rebolloso M, García F, Gil J (2001) Efecto de distintos tratamientos sobre los principios nutritivos, características fermentativas y digestibilidad in vitro de ensilados de subproducto de pimiento. Arch Zoot 50:323–333Google Scholar
  17. Espinoza-Guerra I, Pérez-Oñate C, Montenegro-Vivas L, Sánchez-Laiño A, García-Martínez A, García-Marín A (2016) Composition and in vitro rumen degradation kinetics of saboya grass (Megathyrsus maximus) silage with inclusion of passion fruit rind (Passiflora edulis Sims). Saber ula ve. http://www.saber.ula.ve/handle/123456789/43214. Accessed 15 June 2018
  18. Guha S, Ghosal S, Chattopadhyay U (1996) Antitumor immunomodulatory and-HIV effet of of mangiferin, a naturally occurring glucosylxanthone. Chemotherapy 42:443–451.  https://doi.org/10.1159/000239478 CrossRefGoogle Scholar
  19. Guzmán O, Lemus C, Bugarín J, Bonilla J, Ly J (2010) Ensilado de residuos de mango (Mangifera indica L.) para la alimentación animal. Características fermentativas. Rev Comput Prod Porc 17(3):218–224Google Scholar
  20. Guzmán O, Lemus C, Martínez S, Bonilla J, Plasencia A, Ly J (2012) Chemical characteristics of silages of mango (Mangifera indica L.) byproducts for animal feeding. Cuban J Agric Sci 46(4):369–374Google Scholar
  21. Halik G, Lozicki A, Koziorzebska A, Dymnicka M, Arkuszewska E (2014) Effect of ensiling pumpkin Cucurbita maxima with the addition of inoculants or without it on chemical composition and quality silages. Ann Warsaw Univ Life Sci–SGGW Anim Sci 53:103–110Google Scholar
  22. Henderson N (1993) Silage aditives. Anim Feed Sci Technol 45(1):35–56.  https://doi.org/10.1016/0377-8401(93)90070-Z CrossRefGoogle Scholar
  23. Hernández-Morales J, Sánchez-Santillán P, Torres-Salado N, Herrera-Pérez J, Rojas-Garcia AR, Reyes-Vazquez I, Mendoza-Nuñez MA (2018) Composición química y degradaciones in vitro de vainas y hojas de leguminosas arbóreas del trópico seco de México. Rev Mex Cienc Pecu 9:105–120.  https://doi.org/10.22319/rmcp.v9i1.4332 Google Scholar
  24. Herrera-Pérez J, Vélez-Regino LG, Sánchez-Santillán P, Torres-Salado N, Rojas-García AR, Maldonado-Peralta MA (2018) In vitro fermentation of fibrous substrates by water buffalo ruminal cellulolytic bacteria consortia. MVZ Cordoba 23(3):6860–6870.  https://doi.org/10.21897/rmvz.1374 CrossRefGoogle Scholar
  25. Hoffman PC, Lundberg KM, Bauman LM, Shaver RD, Contreras-Govea FE (2007a) El efecto de la madurez en la digestibilidad del FDN (fibra detergente neutro). Focus Forage. https://fyi.extension.wisc.edu/forage/files/2014/01/MaturityNDFesp-FOF.pdf. Accessed 23 Jan 2019
  26. Hoffman PC, Lundberg KM, Bauman LM, Shaver RD, Contrearas-Govea FE (2007b) Digestibilidad in vitro del FDN (fibra detergente neutro): el debate de 30 vs 48 horas. Focus Forage. https://fyi.extension.wisc.edu/forage/files/2014/01/30vs48esp-FOF.pdf. Accessed 23 Jan 2019
  27. Jawad AH, Alkarkhi AFM, Jason OC, Easa AM, Norulaini NAN (2013) Production of the lactic acid from mango peel waste—factorial experiment. J King Saud Univ-Sci 25:39–45.  https://doi.org/10.1016/j.jksus.2012.04.001 CrossRefGoogle Scholar
  28. Khejornsart P, Wanapat M, Rowlinson P (2011) Diversity of anaerobic fungi and rumen fermentation characteristic in swamp buffalo and beef cattle fed on different diets. Livest Sci 139(3):230–236.  https://doi.org/10.1016/j.livsci.2011.01.011 CrossRefGoogle Scholar
  29. Kinberley AC, Taylor C (1996) A simple colorimetric assay for muramic acid and lactic acid. Appl Biochem Biotechnol 56:49–54.  https://doi.org/10.1007/BF02787869 CrossRefGoogle Scholar
  30. Lima CR, Miranda JN, De Souza J, Borges MA, Braga RN (2007) Composição bromatológica e características fermentativas de silagens de capim elefante (Pennisetum purpureum Schum.) com níveis crescentes de adição do subproduto da Manga (Mangifera indica L.). Rev Ciênc Agron 38(2):199–203Google Scholar
  31. Magaña JG, Ríos G, Martinez JC (2006) Los sistemas de doble propósito y los desafíos en los climas tropicales de México. Arch Latinoam Prod Anim 14(3):105–114Google Scholar
  32. Martínez-Teruel A, Fuensanta HJM, Megías DM (2007) Valor nutritivo in vitro y ensilabilidad de los ensilados de los subproductos agroindustriales de alcachofa y maíz dulce. Rev Cub Cienc Agr 41(1):43–47Google Scholar
  33. McCullough H (1967) The determination of ammonia in whole blood by a direct colormetric method. Clin Chim Acta 17:297–304.  https://doi.org/10.1016/0009-8981(67)90133-7 CrossRefGoogle Scholar
  34. Nancib A, Nancib N, Boubendir A, Boudrant J (2015) The use of date waste for lactic acid production by a fed-batch culture using Lactobacillus casei subsp. Rhamnosus. Braz J Microbiol 46(3):893–902.  https://doi.org/10.1590/S1517-838246320131067 CrossRefGoogle Scholar
  35. Navarro-Villa A, Brien M, López S, Boland T, Kiely P (2012) In vitro rumen methane output of grasses and grass silages differing in fermentation characteristics using the gas-production technique (GPT). Grass Forage Sci 68:228–244.  https://doi.org/10.1111/j.1365-2494.2012.00894.x CrossRefGoogle Scholar
  36. Noguera RR, Ortiz DM, Gallego N (2011) Comparación de líquido ruminal vacuno y caprino como fuente de inóculo en la técnica in vitro de producción de gases. LRRD. http://www.lrrd.org/lrrd23/11/nogu23225.htm. Accessed 22 June 2019
  37. NOM-051-ZOO-1995. Norma Oficial Mexicana. Trato humanitario en la movilización de animales. Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. https://www.gob.mx/senasica/documentos/nom-051-zoo-1995. Accessed 22 June 2019
  38. Posada SL, Noguera RR (2005) Técnica in vitro de producción de gases: una herramienta para la evaluación de alimentos para rumiantes. LRRD. http://www.lrrd.org/lrrd17/4/posa17036.htm. Accessed 25 June 2019
  39. Ramírez R, Ramírez RG, López F (2002) Factores estructurales de la pared celular que afectan su digestibilidad. Ciencia UANL. http://eprints.uanl.mx/1175/1/factores.pdf. Accessed 05 June 2019
  40. Ramírez JF, Posada SO, Noguera R (2014) Metanogénesis ruminal y estrategias para su mitigación. Rev. CES Med Vet Zoot. http://revistas.ces.edu.co/index.php/mvz/article/view/3151/2251. Accessed 03 June 2019
  41. Razzaghzadeh S, Amini-jabalkandi J, Hashemi A (2007) Effects of different leves of pumpkin (Cucurbita pepo) residue silage replancement with forage part of ration on male buffalo calves fattening performance. Res J Anim Sci 1(3):95–96Google Scholar
  42. Rodríguez MC, Aguirre A, Salvador F, Ruiz O, Arzola C, La OO, Villalobos C (2010) Gas production, volatile fatty acids and ammonia nitrogen in vitro with diets based on dry pasture. Cuban J Agric Sci 44(3):251–259Google Scholar
  43. Salamanca G, Forero LF, García LJ, Díaz C, Salazar B (2007) Avances en la caracterización, conservación y procesamiento del mango (Mangifera indica L.) en Colombia. Rev Tumbaga. https://dialnet.unirioja.es/servlet/articulo?codigo=4550280. Accessed 30 June 2019
  44. Sánchez-Santillán P, Cobos-Peralta MA (2016) In vitro production of volatile fatty acids by reactivated cellulolytic bacteria and total ruminal bacteria in cellulosic substrate. Agrociencia 50(5):565–574Google Scholar
  45. Sánchez-Santillán P, Meneses-Mayo M, Miranda-Romero LA, Santellano-Estrada E, Alarcón-Zúñiga B (2015) Fribrinolytic activity and gas production by Pleurotus ostreatus-IE8 and Fomes fomentarius - EUM1 in bagasse cane. Rev MVZ Córdoba 20:4907–4916.  https://doi.org/10.21897/rmvz.6 CrossRefGoogle Scholar
  46. Sánchez-Santillán P, Cobos-Peralta MA, Hernández-Sánchez D, Álvarado-Iglesias A, Espinosa-Victoria D, Herrera-Haro JG (2016) Use of activated carbon to preserve lyophilized cellulolytic bacteria. Agrociencia 50(5):575–582Google Scholar
  47. SAS (2011) SAS/STAT Sofware. Versión 9.3. Cary, NC SAS, USA: Institute INCGoogle Scholar
  48. Sruamsiri S, Silman P (2009) Nutritive value and nutrient digestibility of ensiled mango by-products. Maejo Int J Sci Technol 3(3):371–378Google Scholar
  49. Torres-Salado N, Sánchez-Santillán P, Rojas-García AR, Herrera-Pérez J, Hernández-Morales J (2018) Producción de gases efecto invernadero in vitro de leguminosas arbóreas del trópico seco mexicano. Arch Zoot 67:55–59.  https://doi.org/10.21071/az.v67i257.3347 CrossRefGoogle Scholar
  50. Valencia A, Hernández A, López L (2011). El ensilaje ¿qué es y para qué sirve?. Universidad Veracruzana. https://www.uv.mx/cienciahombre/revistae/vol24num2/articulos/ensilaje. Accessed 30 June 2019
  51. Van Soest PJ, Robertson RJ, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597.  https://doi.org/10.3168/jds.S0022-0302(91)78551-2 CrossRefGoogle Scholar
  52. Yahía E, de Jornelas J, Ariza F (2006) El mango. Trillas, Ciudad México, MéxicoGoogle Scholar
  53. Zhang J, Rong-Bo G, Yang-Ling Q, Jiang-Tao Q, Xian-Zheng Y, Xiao-Shuang S, Chuan-Shui W (2015) Bioaugmentation with an acetate-type fermentation bacterium Acetobacteroides hydrogenigenes improves methane production from corn straw. Bioresour Technol 179:306–313.  https://doi.org/10.1016/j.biortech.2014.12.022 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Paulino Sánchez-Santillán
    • 1
  • Jerónimo Herrera-Pérez
    • 1
  • Nicolás Torres-Salado
    • 1
    Email author
  • Isaac Almaraz-Buendía
    • 2
  • Iván Reyes-Vázquez
    • 3
  • Adelaido Rafael Rojas-García
    • 1
  • Marcelino Gómez-Trinidad
    • 1
  • Edgar Octavio Contreras-Ramírez
    • 1
  • María de los Ángeles Maldonado-Peralta
    • 1
  • Filiberto Magadan-Olmedo
    • 1
  1. 1.Facultad de Medicina Veterinaria y Zootecnia No. 2Universidad Autónoma de GuerreroCuajinicuilapaMexico
  2. 2.Instituto de Ciencias AgropecuariasUniversidad Autónoma del Estado de HidalgoTulancingoMexico
  3. 3.Nutritionist in Dairy Cattle Throw NutritionMexico CityMexico

Personalised recommendations