Advertisement

Use of rice polishing and sugar cane molasses as supplements in dual-purpose cows fed Leucaena leucocephala and Pennisetum purpureum

  • J. M. Flores-Cocas
  • C. F. Aguilar-Pérez
  • L. Ramírez-AvilésEmail author
  • F. J. Solorio-Sánchez
  • A. J. Ayala-Burgos
  • J. C. Ku-Vera
Article

Abstract

This study was conducted on a cattle farm in Yucatan, Mexico. The objective was to assess the effect of energy supplementation on milk yield and composition, and on the efficiency of use of dietary N in cows fed Leucaena leucocephala foliage (30% of total diet) and grass Pennisetum purpureum. Four multiparous crossbred Bos indicus × B. taurus cows in the first third of lactation were used in a 4 × 4 Latin square design. Treatments consisted of two energy sources: sugar cane molasses and rice polishing, offered individually or mixed, and a control group (Ctrl) without energy supplementation. The supplements were iso-proteic and iso-energetic and were formulated to provide 25% of the daily energy requirement. Supplementation increased dry matter intake (3 kg/cow/d). Milk yield was 13% higher (P = 0.048) in the supplemented treatments (7.86 kg/cow/d) than in the Ctrl group (6.97 kg/cow/d). Milk yield did not differ (P > 0.05) among supplemented treatments. Milk fat was higher for the Ctrl treatment compared with molasses and rice polishing. Concentrations of protein, lactose and solids non-fat in milk were not significantly affected by energy supplementation. The lower concentrations of blood urea nitrogen (BUN) found in the treatments with supplementation (9.77 mg/dl) compared with Ctrl (15.61 mg/dl) indicates greater efficiency in capturing N by rumen microorganisms. No differences in BUN were found among supplemented groups. It is concluded that energy supplementation with rice polishing alone or in combination with molasses, can improve the efficiency of use of dietary N, and milk yield, in cows fed 30% L. leucocephala foliage.

Keywords

Energy supplementation Silvopastoral system Efficiency of N utilization Milk yield and composition 

Notes

References

  1. AFRC (1993) Energy and protein requirements of ruminants: an advisory manual prepared by the AFRC technical committee on responses to nutrients. CAB International, SurreyGoogle Scholar
  2. Aguilar-Pérez C, Ku-Vera JC, Centurion-Castro F, Garnsworthy PC (2009) Energy balance, reproduction and milk production in grazing crossbred cows in the tropics with and without cereal supplementation. Livest Sci 122:227–233.  https://doi.org/10.1016/j.livsci.2008.09.004 CrossRefGoogle Scholar
  3. AOAC (1980) Association of Official Analytical Chemists. Official Methods of Analysis, 13th edn. AOAC, Washington, DCGoogle Scholar
  4. Arjona-Alcocer VA (2014) Evaluación de cuatro suplementos energéticos sobre el comportamiento productivo en vacas de doble propósito alimentadas con follaje de Leucaena leucocephala y Pennisetum purpureum. Dissertation, Universidad Autónoma de Yucatán. Mérida, Yucatán, MéxicoGoogle Scholar
  5. Ayala A, Honhold N, Delgado R, Magaña J (1992) A visual condition scoring scheme for Bos indicus and crossbred cattle. In: Anderson S, Wadsworth J (eds) Proceedings of IFS/FMVZ-UADY international workshop, dual purpose cattle production research. Mérida, México, March, pp 119–128Google Scholar
  6. Bacab-Pérez HM, Solorio-Sánchez FJ (2011) Oferta y consumo de forraje y producción de leche en ganado de doble propósito manejado en sistemas silvopastoriles en Tepalcatepec, Michoacán. Trop Subtrop Agroecosyst 13:271–278Google Scholar
  7. Baurhoo B, Mustafa A (2014) Short communication: effects of molasses supplementation on performance of lactating cows fed high-alfalfa silage diets. J Dairy Sci 97:1072–1076.  https://doi.org/10.3168/jds.2013-6989 CrossRefGoogle Scholar
  8. Bottini-Luzardo MB, Aguilar-Pérez CF, Centurión-Castro FG, Solorio-Sánchez FJ, Ku-Vera JC (2016) Milk yield and blood urea nitrogen in crossbred cows grazing L. leucocephala in a silvopastoral system in the Mexican tropics. Trop Grassl Forrajes Trop 4:159–167.  https://doi.org/10.17138/TGFT(4)159-167 CrossRefGoogle Scholar
  9. Broderick GA, Radloff WJ (2004) Effect of molasses supplementation on the production of lactating dairy cows fed diets based on alfalfa and corn silage. J Dairy Sci 87(9):2997–3009.  https://doi.org/10.3168/jds.S0022-0302(04)73431-1 CrossRefGoogle Scholar
  10. Cáceres O, González E (1998) Valor nutritivo de follaje de árboles y arbustos tropicales. IV. Leucaena leucocephala cv. Cunningham. Pastos y Forrajes 21(3):1–5Google Scholar
  11. Calsamiglia S, Ferret A, Reynolds C, Kristensen N, van Vuuren A (2010) Strategies for optimizing nitrogen use by ruminants. Animal 4:1184–1196.  https://doi.org/10.1017/S1751731110000911 CrossRefGoogle Scholar
  12. Campling RC, Murdoch JC (1966) The effect of concentrates on the voluntary intake of roughages by cows. J Dairy Res 33:1–11.  https://doi.org/10.1017/S0022029900011651 CrossRefGoogle Scholar
  13. Cardenas GD, Newbold CJ, Galbraith H, Topps JH, Chen XB, Rooke JA (1993) Rice polishing as an alternative to sugar cane molasses as a supplement with urea to low-quality forage diets for ruminants. Anim Prod 56:85–92Google Scholar
  14. Caton JS, Dhuyvetter DV (1997) Influence of energy supplementation on grazing ruminants: requirements and responses. J Anim Sci 75:533–542CrossRefGoogle Scholar
  15. Chamberlain AT, Wilkinson JM (2002) Alimentación de la Vaca Lechera. Acribia, ZaragozaGoogle Scholar
  16. Corrado-Cuevas LH (1991) Efecto de cuatro niveles de pulidura de arroz sobre la producción de vacas en pastoreo suplementadas con forraje de Poro (Erytrhin apoeppigiana (Walpers) O.F. Cook). Dissertation, Centro Agronómico Tropical de Investigación y Enseñanza, Costa RicaGoogle Scholar
  17. DRMS (Dairy Records Management systems) (2014) Energy-corrected milk. DHI glossary. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.686.2482&rep=rep1&type=pdf. Accessed February 14 2019
  18. Elliott R, Ferreiro HM, Priego A, Preston TR (1977) Rice polishing as a supplement in sugar cane diets: the quantities of starch (α-linked glucose polymers) entering the proximal duodenum. Trop Anim Prod 3:30–35Google Scholar
  19. Ferreiro HM, Elliott R, Preston TR (1979) The effect of energy rich feed supplements on the availability of nutrients in the duodenum of cattle fed sugar cane. Trop Ani Prod 4:248–254Google Scholar
  20. Gehman AM, Bertrand JA, Jenkins TC, Pinkerton BW (2006) The effect of carbohydrate source on nitrogen capture in dairy cows on pasture. J Dairy Sci 89:2659–2667CrossRefGoogle Scholar
  21. INEGI (2015) Instituto Nacional de Estadística, Geografía e informática. Anuario estadístico del Estado de Yucatán. Instituto Nacional de Estadística, Geografía e Informática. MéxicoGoogle Scholar
  22. Jennings JS, Meyer BE, Guiroy PJ, Cole ND (2018) Energy costs of feeding excess protein from corn-based by-products to finishing cattle. J Anim Sci 96:653–669.  https://doi.org/10.10993/jas/sky021 CrossRefGoogle Scholar
  23. Jiménez-Ferrer G, Mendoza-Martínez G, Soto-Pinto L (2015) Evaluation of local energy sources in milk production in a tropical silvopastoral system with Erytrina poeppigiana. Trop Anim Health Prod 47:903–908.  https://doi.org/10.1007/s11250-015-0806-7 CrossRefGoogle Scholar
  24. Keim JP, Anrique R (2011) Nutritional strategies to improve nitrogen use efficiency by grazing dairy cows. Chil J Agric Res 71:623.  https://doi.org/10.4067/S0718-58392011000400019 CrossRefGoogle Scholar
  25. Kharat ST, Prasad VL, Sobale BN, Sane MS, Joshi AL, Rangnekar DV (1980) Note on comparative evaluation of Leucaena leucocephala, Desmanthus virgatus and Medicago sativa for cattle. Indian J Anim Sci 50(8):638–639Google Scholar
  26. Larios-Saldaña A, Porcayo-Calderón J, Poggi-Varaldo HM (2005) Obtención de una harina de pulido de arroz desengrasado con bajo contenido de fibra neutro detergente. Interciencia. 30: 29–32. http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S0378184420050001ls
  27. Leng RA (1990) Factors affecting the utilization of ‘poor-quality’forages by ruminants particularly under tropical conditions. Nutr Res Rev 3:277–303.  https://doi.org/10.1079/NRR19900016 CrossRefGoogle Scholar
  28. Leng RA, Preston TR (1976) Caña de azúcar para la producción bovina: limitaciones actuales, perspectivas y prioridades para la investigación. Prod Anim Trop 1(1):1–22Google Scholar
  29. Lessa ACR, Madari BE, Paredes DS, Boddey RM, Urquiaga S, Jantalia CP, Alves BJR (2014) Bovine urine and dung deposited on Brazilian savannah pastures contribute differently to direct and indirect soil nitrous oxide emission. Agric Ecosyst Environ 190:104–111.  https://doi.org/10.1016/j.agee.2014.01.010 CrossRefGoogle Scholar
  30. Magaña-Monforte JG, Ríos-Arjona G, Martínez-González JC (2006) Dual purpose cattle production systems and the challenges of the tropics of Mexico. Archivos Latinoamericanos de Producción Animal 14(3):105–114Google Scholar
  31. McDonald P, Edwards RA, Greenhalgh JFD, Morgan CA (2011) Animal nutrition. Prentice Hall, Upper Saddle, NJGoogle Scholar
  32. Mendieta-Araica B, Spörndly R, Reyes-Sánchez N, Spörndly E (2011) Moringa (Moringa oleifera) leaf meal as a source of protein in locally produced concentrates for dairy cows fed low protein diets in tropical areas. Livest Sci 137:10–17.  https://doi.org/10.1016/j.livsci.2010.09.021 CrossRefGoogle Scholar
  33. Ministry of Agriculture, Fisheries and Food (MAFF) (1975) Energy allowance and feeding systems for ruminants. Tech. Bull., No. 33. Her Majesty’s Stationery Office, LondonGoogle Scholar
  34. National Research Council (NRC) (2001) Nutrient Requirements of Dairy Cattle: 2001. National Academy Press, Washington, DCGoogle Scholar
  35. Nsahlai IV, Siaw DEKA, Umunna NN (1995) Inter-relationship between chemical constituents, rumen dry matter and nitrogen degradability in fresh leaves of multipurpose trees. J Sci Food Agric 69:235–246.  https://doi.org/10.1002/jsfa.2740690214 CrossRefGoogle Scholar
  36. Olmos JJC, Broderick CA (2006) Effect of dietary crude protein concentration on milk production and nitrogen utilization in lactating dairy cows. J Dairy Sci 89:1704–1712.  https://doi.org/10.3168/jds.S0022-0302(06)72238-X CrossRefGoogle Scholar
  37. Ondiek JO, Abdulrazak SA, Tuitoek JK, Bareeba FB (1999) The effects of Gliricidia sepium and maize bran as supplementary feed to Rhodes grass hay on intake, digestion and live weight gains of dairy goats. Livest Prod Sci 61(1):65–70CrossRefGoogle Scholar
  38. Ondiek JO, Tuitoek JK, Abdulrazak SA, Bareeba FB, Fujihara T (2000) Use of Leucaena leucocephala and Gliricidia sepium as nitrogen sources in supplementary concentrates for dairy goats offered Rhodes grass hay. Asian Australas J Anim Sci 13:1249–1254CrossRefGoogle Scholar
  39. Ondiek JO, Abdulrazak SA, Njoka EN (2010) Effects of supplementing Chloris gayana hay and Maerua angolensis with graded levels of maize germ meal on voluntary feed intake, diet digestion, nitrogen balance and average daily gains of growing small East African goats. Anim Nutr Feed Technol 10(2):147–155Google Scholar
  40. Ondiek JO, Abdulrazak SA, Njoka EN (2011) Effects of feeding Rhodes grass (Chloris gayana) hay with graded levels of Zizyphus mucronata on voluntary feed intake, nutrient utilization, nitrogen balance and bodyweight gains in growing small East African goats. Anim Nutr Feed Technol 11(1):9–17Google Scholar
  41. Palmquist DL (1984) Use of fats in diets for lactating dairy cows. In: Wiseman J (ed) Fats in animal nutrition. Butterworths, London, pp 357–381CrossRefGoogle Scholar
  42. Peniche-González IN, González-López ZU, Aguilar-Pérez CF, Ku-Vera JC, Ayala-Burgos AJ, Solorio-Sánchez FJ (2014) Milk production and reproduction of dual-purpose cows with a restricted concentrate allowance and access to an association of Leucaena leucocephala and Cynodon nlemfuensis. J Appl Anim Res 42(3):345–351.  https://doi.org/10.1080/09712119.2013.875902 CrossRefGoogle Scholar
  43. Poppi DP, McLennan S (1995) Protein and energy utilization by ruminants at pasture. J Anim Sci 73:278–290.  https://doi.org/10.2527/1995.731278x CrossRefGoogle Scholar
  44. Preston TR (1995) Tropical animal feeding: a manual for research workers. Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/DOCREP/003/V9327E/V9327E00.HTM. Accessed 8 October 2018
  45. Preston TR, Leng RA (1989) Adecuando los sistemas de producción pecuaria a los recursos disponibles: aspectos básicos y aplicados del nuevo enfoque sobre la nutrición de rumiantes en el trópico. Círculos impreso Ltda, ColombiaGoogle Scholar
  46. Preston TR, Carcaño C, Álvarez FJ, Gutiérrez DG (1976) Pulidura de arroz como suplemento de la caña de azúcar, efecto del nivel de pulidura de arroz y procesamiento de la caña de azúcar por descortezación o picada. Prod Anim Tropical 1(3):156–169Google Scholar
  47. Rojo-Rubio R, Vázquez-Armijo JF, Pérez-Hernández P, Mendoza-Martínez GD, Salem AZM, Albarrán-Portillo B, Gutiérrez-Cedillo JG (2009) Dual purpose cattle production in Mexico. Trop Anim Health Prod 41:715–721.  https://doi.org/10.1007/s11250-008-9249-8 CrossRefGoogle Scholar
  48. Ruiz-González A, Ayala-Burgos AJ, Aguilar-Pérez CF, Ku-Vera JC (2013) Efficiency of utilization of dietary nitrogen for milk production by dual-purpose cows fed increasing levels of Leucaena leucocephala forage mixed with Pennisetum purpureum grass. In: Energy and protein metabolism and nutrition in sustainable animal production, Wageningen Academic Publishers, Wageningen. pp 121–122.  https://doi.org/10.3920/978-90-8686-781-3_33
  49. SAS (2013) SAS/STAT. User’s guide. SAS Institute, Cary, NCGoogle Scholar
  50. Schroeder GF, Gagliostro G, Bargo F, Delahoy JE, Muller LD (2004) Effects of fat supplementation on milk production and composition by dairy cows on pasture: a review. Livest Prod Sci 86:1–18.  https://doi.org/10.1016/S0301-6226(03)00118-0 CrossRefGoogle Scholar
  51. Tercero JO (2003) Efecto de la suplementación energética y el patrón de alimentación sobre el aporte de nitrógeno microbial al duodeno, en vacas alimentadas a base de forraje tropical. Trop Subtrop Agroecosyst 2(2):97–98Google Scholar
  52. Tinoco-Magaña JC, Aguilar-Pérez CF, Delgado-León R, Magaña-Monforte JG, Ku-Vera JC, Herrera Camacho J (2012) Effects of energy supplementation on productivity of dual-purpose cows grazing in a silvopastoral system in the tropics. Trop Anim Health Prod 44:1073–1078.  https://doi.org/10.1007/s11250-011-0042-8 CrossRefGoogle Scholar
  53. Tyrrell HF, Reid JT (1965) Prediction of the energy value of cow’s milk. J Dairy Sci 48(9):1215–1223.  https://doi.org/10.3168/jds.S0022-0302(65)88430-2 CrossRefGoogle Scholar
  54. Upadhyay VS, Rekib A, Pathak PS (1974) Nutritive value of Leucaena leucocephala. Indian Vet J 51:534–537Google Scholar
  55. Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597.  https://doi.org/10.3168/jds.S0022-0302(91)78551-2 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Departamento de Nutrición Animal, Facultad de Medicina Veterinaria y ZootecniaUniversidad Autónoma de YucatánMéridaMéxico

Personalised recommendations