Advertisement

Plants extract and bioactive compounds on rumen methanogenesis

  • Dinesh Kumar Dhanasekaran
  • Tairon Pannunzio Dias-Silva
  • Adibe Luiz Abdalla Filho
  • Gabriel Zanuto Sakita
  • Adibe Luiz Abdalla
  • Helder Louvandini
  • Mona M. M. Y. ElghandourEmail author
Article

Abstract

Feed additives are used in animal diets various beneficial reasons including animal growth, remedy for nutrient deficiency, adsorption of toxins, breakdown of anti-nutritional factors and reduced methane production in the rumen. In past 2 decades, many investigations have focused on studying effects of antibiotics on ruminal fermentation, however, European Union has banned the use antibiotics in animal feeds due to human food safety. Therefore, using plant extracts containing a high level of plant secondary metabolites (PSM) can be an alternative for improving animal performance without compromising food security issues. Most of the plant extracts contains PSM that can be serve as natural resource for animal production systems, nevertheless it is largely unexploited as it is considered as anti-nutritional factors. However, in recent years, various studies emphasized that a group of PSM (e.g. tannins, essential oil and saponins) has ability to manipulate rumen fermentation in a favorable way, thus can be used as natural alternatives for improving ruminant production systems. However, the role of PSM still remains unclear due to limited data and need to be more fully exploited to better understand their properties as bioactive compounds. The present review will discuss the use of plant secondary metabolites in rumen metabolism in terms of biochemical and physiological performance on ruminant production systems, covering topics on proven effectiveness, consumer acceptance, environment, animal safety and welfare.

Keywords

Forestry trees Secondary metabolites Methane Ruminants 

Notes

References

  1. Abdalla Filho AL, Corrêa PS, Lemos LN, Dineshkumar D, Issakowicz J, Ieda EH, Lima PMT, Barreal M, McManus C, Mui TS, Abdalla AL, Louvandini H (2017) Diets based on plants from Brazilian Caatinga altering ruminal parameters, microbial community and meat fatty acids of Santa Inês lambs. Small Rumin Res 154:70–77CrossRefGoogle Scholar
  2. Achakzai AKK, Palwasha A, Ayeesha M, Kayani SA, Tareen RB (2009) Response of plant parts and age on the distribution of secondary metabolites on plants found in Quetta. Pak J Bot 41:2129–2135Google Scholar
  3. Agarwal N, Shekhar C, Kumar R, Chaudhary LC, Kamra DN (2009) Effect of peppermint oil on in vitro methanogensis and fermentation of feed with buffalo rumen liquor. Anim Feed Sci Technol 148:321–327CrossRefGoogle Scholar
  4. Agarwal N, Kamra DN, Chaudhary LC (2015) Rumen microbial ecosystem of domesticated ruminants. In: Puniya AK, Singh R, Kamra DN (eds) Rumen microbiology: from evolution to revolution. Springer, New Delhi, pp 17–30CrossRefGoogle Scholar
  5. Balandrin MF, Klocke JA, Wurtele ES, Bollinger WH (1985) Natural plant chemicals: sources of industrial and medicinal materials. Science 228:1154CrossRefPubMedGoogle Scholar
  6. Barton KE, Koricheva J (2010) The ontogeny of plant defense and herbivory: characterizing general patterns using meta-analysis. Am Nat 175:481–493CrossRefPubMedGoogle Scholar
  7. Beauchemin KA, Mcginn SM, Martinez TF, Mcallister TA (2007) Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. J Anim Sci 85:1990–1996CrossRefPubMedGoogle Scholar
  8. Benchaar C, Greathead H (2011) Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim Feed Sci Technol 166:338–355CrossRefGoogle Scholar
  9. Bergman EN (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70:567–590CrossRefPubMedGoogle Scholar
  10. Bhatta R, Uyeno Y, Tajima K, Takenaka A, Yabumoto Y, Nonaka I, Enishi O, Kurihara M (2009) Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J Dairy Sci 92:5512–5522CrossRefPubMedGoogle Scholar
  11. Bhatta R, Baruah L, Saravanan M, Suresh KP, Sampath KT (2012a) Effect of medicinal and aromatic plants on rumen fermentation, protozoa population and methanogenesis in vitro. J Anim Physiol Anim Nutr 97:446–456CrossRefGoogle Scholar
  12. Bhatta R, Saravanan M, Baruah L, Sampath KT (2012b) Nutrient content, in vitro ruminal fermentation characteristics and methane reduction potential of tropical tannin-containing leaves. J Agric Sci 92:2929–2935CrossRefGoogle Scholar
  13. Bodas R, Prieto N, García-González R, Andrés S, Giráldez FJ, López S (2012) Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim Feed Sci Technol 176:78–93CrossRefGoogle Scholar
  14. Brooker JD, O’Donovan L, Skene I, Sellick G (1999) Mechanisms of tannin resistance and detoxification in the rumen. In: Proceedings of the 8th international symposium on microbial ecologyGoogle Scholar
  15. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol 94:223–253CrossRefPubMedGoogle Scholar
  16. Busquet M, Calsamiglia S, Ferret A, Cordozo PW, Kamel C (2005) Effect of garlic oil and four of its compounds on rumen microbial fermentation. J Dairy Sci 88:4393–4404CrossRefPubMedGoogle Scholar
  17. Calsamiglia S, Busquet M, Cardozo PW, Castillejos L, Ferret A (2007) Invited review: essential oils as modifiers of rumen microbial fermentation. J Dairy Sci 90:2580–2595CrossRefPubMedGoogle Scholar
  18. Castillejos L, Calsamiglia S, Ferret A (2006) Effect of essential oils active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. J Dairy Sci 89:2649–2658CrossRefPubMedGoogle Scholar
  19. Castillejos L, Calsamiglia S, Martín-Tereso J, Wijlen TH (2008) In vitro evaluation of effects of ten essential oils at three doses on ruminal fermentation of high concentrate feedlot-type diets. Anim Feed Sci Technol 145:259–270CrossRefGoogle Scholar
  20. Chahaardoli A, Nooriyan Soroor ME, Foroughi A (2018) The effects of Anise (Pimpinella anisum) essential oil and extract on in vitro rumen fermentation parameters and protozoa population of sheep. Int J Vet Sci 7:21–27Google Scholar
  21. Chollot B, Chapon L, Urion E (1962) Polyphenolisehe und proteinisehe VorNiufer der Oxydationstriibung. (Nancy, Versuchslab. d. Brauerei-Hochschule.). Brauwiss 15:321–329Google Scholar
  22. Chouchen R, Attia K, Darej C, Moujahed N (2018) Potential of eucalyptus (Eucalyptus camaldulensis) essential oil to modify in vitro rumen fermentation in sheep. J Appl Anim Res 46:1220–1225CrossRefGoogle Scholar
  23. Cieslak A, Zmora P, Pers-Kamczyc E, Szumacher-Strabel M (2012) Effects of tannins source (Vaccinium vitis idaea L.) on rumen microbial fermentation in vivo. Anim Feed Sci Technol 176:102–106CrossRefGoogle Scholar
  24. Cieslak A, Szumacher-Strabel M, Stochmal A, Oleszek W (2013) Plant components with specific activities against rumen methanogens. Animal 7:253–265CrossRefPubMedGoogle Scholar
  25. Cipriano-Salazar M, Rojas-Hernández S, Olivares-Pérez J, Jiménez-Guillén R, Cruz-Lagunas B, Camacho-Díaz LM, Ugbogu AZ (2018) Antibacterial activities of tannic acid against isolated ruminal bacteria from sheep. Microb Pathog 117:255–258CrossRefPubMedGoogle Scholar
  26. Cobellis G, Trabalza-Marinucci M, Marcotullio MC, Yu Z (2016) Evaluation of different essential oils in modulating methane and ammonia production, rumen fermentation, and rumen bacteria in vitro. Anim Feed Sci Technol 215:25–36CrossRefGoogle Scholar
  27. De Sousa RR, Queiroz KC, Souza AC, Gurgueira SA, Augusto AC, Miranda MA, Peppelenbosch MP, Ferreira CV, Aoyama H (2007) Phosphoprotein levels, MAPK activities and NFkappaB expression are affected by fisetin. J Enzyme Inhib Med Chem 22:439–444CrossRefPubMedGoogle Scholar
  28. Dias Moreira G, Lima PMT, Borges BO, Longo C, Mcmanus C, Abdalla A, Louvandini H (2013) Tropical tanniniferous legumes used as an option to mitigate sheep enteric methane emission. Trop Anim Health Prod 48:879–882CrossRefGoogle Scholar
  29. Durmic Z, Moate PJ, Eckard R, Revell DK, Williams R, Vercoe PE (2014) In vitro screening of selected feed additives, plant essential oils and plant extracts for rumen methane mitigation. J Agric Sci 94:1191–1196CrossRefGoogle Scholar
  30. European Union. Regulation (EC) No. 1831/2003 of European Parliament and the Council of 22 September 2003 on additives for use in animal nutrition. Official Journal of European Union, Brussels, 18 Oct 2003. p L268/36Google Scholar
  31. Evans JD, Martin SA (2000) Effects of thymol on ruminal micro-organisms. Curr Microbiol 41:336–340CrossRefPubMedGoogle Scholar
  32. Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol 52:29–66CrossRefPubMedGoogle Scholar
  33. Faixova Z, Faix S (2005) Manipulation of rumen nitrogen metabolism—a review. Folia Vet 49:215–219Google Scholar
  34. Fang X, Yang CMAQ, Yang L, Chen X (2011) Genomics grand for diversified plant secondary metabolites. Plant Divers Resour 33:53–64Google Scholar
  35. Ferreira D, Brandt EV, Coetzee J, Malan E (1999) Condensed tannins. Prog Chem Org Nat Prod 77:22–59Google Scholar
  36. Field JA, Lettinga G (1992) Biodegradation of tannins. In: Sigel H, Sigel A (eds) Metal ions in biological systems. Degradation of environmental pollutants by microorganisms and their metalloenzymes. Marcel Dekker Inc., New York, pp 61–97Google Scholar
  37. Fraser GR, Chaves AV, Wang Y, McAllister TA, Beauchemin KA (2007) Assessment of the effects of cinnamon leaf oil on rumen microbial fermentation using two continuous culture systems. J Dairy Sci 90:2315–2328CrossRefPubMedGoogle Scholar
  38. Gea A, Stringano E, Brown HR, Mueller-Harvey I (2011) In situ analysis and structural elucidation of Sainfoin (Onobrychis viciifolia) tannins for high-throughput germplasm screening. J Agric Food Chem 59:495–503CrossRefPubMedGoogle Scholar
  39. Gerber P, Vellinga T, Opio C, Steinfeld H (2011) Productivity gains and greenhouse gas emissions intensity in dairy systems. Livest Sci 139:100–108CrossRefGoogle Scholar
  40. Gershenzon J, Croteau R (1991) Terpenoids. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites, vol 1. Academic Press, San Diego, CA, pp 165–219CrossRefGoogle Scholar
  41. Gouvea DR, Gobbo-Neto L, Sakamoto HT, Lopes NP, Lopes JLC, Meloni F, Amaral JG (2012) Seasonal variation of the major secondary metabolites presents in the extract of Eremanthus mattogrossensis Less (Asteraceae: Vernonieae) leaves. Quím Nova 35:2139–2145CrossRefGoogle Scholar
  42. Guo YQ, Liu JX, Lu Y, Zhu WY, Denman SE, McSweeney CS (2008) Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms. Lett Appl Microbiol 47:421–426CrossRefPubMedGoogle Scholar
  43. Guyader J, Eugène M, Doreau M, Morgavi DP, Gérard C, Martin C (2017) Tea saponin reduced methanogenesis in vitro but increased methane yield in lactating dairy cows. J Dairy Sci 3:1845–1855CrossRefGoogle Scholar
  44. Hagerman AE, Butler LG (1989) Choosing appropriate methods and standards for assaying tannins. J Chem Ecol 11:1535–1544Google Scholar
  45. Hariadi BT, Santoso B (2010) Evaluation of tropical plants containing tannin on in vitro methanogenesis and fermentation parameters using rumen fluid. J Sci Food Agric 90:456–461PubMedGoogle Scholar
  46. Hart KJ, Yanez-Ruiz DR, Duval SM, McEwan NR, Newbold CJ (2008) Plant extracts to manipulate rumen fermentation. Anim Feed Sci Technol 147:8–35CrossRefGoogle Scholar
  47. Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846CrossRefPubMedGoogle Scholar
  48. Haslam E (1989) Plant polyphenols. Cambridge University Press, CambridgeGoogle Scholar
  49. Henderson G, Cox F, Ganesh S, Jonker A, Young W, Abecia L, Janssen PH (2015) Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 5:145–167CrossRefGoogle Scholar
  50. Hess HD, Monsalve LM, Lascano CE, Carulla JE, Diaz TE, Kreuzer M (2003) Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: effects on in vitro ruminal nitrogen turnover and methanogenesis. Aust J Agric Res 54:703–713CrossRefGoogle Scholar
  51. Holtshausen L, Chaves AV, Beauchemin KA, McGinn SM, McAllister TA, Odongo NE, Cheeke PR, Benchaar C (2009) Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. J Dairy Sci 92:2809–2821CrossRefPubMedGoogle Scholar
  52. Hostettmann K, Marston A (1995) Saponins. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  53. Hristov AN, Firkins JL, Dijkstra J, Kebreab E, Waghorn G, Makkar HPS, Adesogan AT, Yang W, Lee C, Gerber PJ, Henderson B, Tricarico JM (2013) Special topics—mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J Anim Sci 91:5045–5069CrossRefPubMedGoogle Scholar
  54. Huang XD, Liang JB, Tan HY, Yahya R, Khamseekhiew B, Ho YW (2010) Molecular weight and protein binding affinity of Leucaena condensed tannins and their effects on in vitro fermentation parameters. Anim Feed Sci Technol 159:81–87CrossRefGoogle Scholar
  55. Huang XD, Liang JB, Tan HY, Yahya R, Ho YW (2011) Effects of Leucaena condensed tannins of differing molecular weights on in vitro CH4 production. Anim Feed Sci Technol 166:373–376CrossRefGoogle Scholar
  56. Hundal JS, Wadhwa M, Bakshi MPS (2016) Effect of supplementing essential oils on the in vitro methane production and digestibility of wheat straw. J Anim Res Nutr 1:1–14Google Scholar
  57. Ingale SL, Lokhande A, Zadbuke S (2013) Nutritional strategies to mitigate greenhouse gases emission from livestock agriculture: a review. Livest Res Intl 1:34–45Google Scholar
  58. Iqbal MF, Cheng Y, Zhu W, Zeshan B (2008) Mitigation of ruminant methane production: current strategies, constraints and future options. World J Microb Biot 24:2747–2755CrossRefGoogle Scholar
  59. Jadhav RV, Kannan A, Bhar R, Sharma OP, Gulati A, Rajkumar K, Mal G, Singh B, Verma MR (2018) Effect of tea (Camellia sinensis) seed saponins on in vitro rumen fermentation, methane production and true digestibility at different forage to concentrate ratios. J Appl Anim Res 46:118–124CrossRefGoogle Scholar
  60. Jahani-Azizabadi H, Durmic Z, Vadhanabhuti J, Vercoe PE (2019) Effect of some australian native shrubs essential oils on in vitro rumen microbial fermentation of a high-concentrate diet. J Anim Plant Sci 29:8–15Google Scholar
  61. Juottonen H, Galand PE, Yrjälä K (2006) Detection of methanogenic Archaea in peat: comparison of PCR primers targeting the mcrA gene. Res Microbiol 157:914–921CrossRefPubMedGoogle Scholar
  62. Kamra D (2005) Rumen microbial ecosystem. Curr Sci 89:124–135Google Scholar
  63. Khatiwora E, Adsul VB, Kulkarni MM, Deshpande NR, Kashalkar RV (2010) Spectroscopic determination of total phenol and flavonoid contents of Ipomoea carnea. Int J ChemTech Res 2:1698–1701Google Scholar
  64. Kliebenstein DJ (2013) Making new molecules—evolution of structures for novel metabolites in plants. Curr Opin Plant Biol 16:112–117CrossRefPubMedGoogle Scholar
  65. Klita PT, Mathison GW, Fenton TW, Hardin RT (1996) Effects of alfalfa root saponins on digestive function in sheep. J Anim Sci 74:1144–1156CrossRefPubMedGoogle Scholar
  66. Knapp JR, Laur GL, Vadas PA, Weiss WP, Tricarico JM (2014) Invited review: enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. J Dairy Sci 97:3231–3261CrossRefPubMedGoogle Scholar
  67. Lei Z, Zhang K, Li C, Wu J, Davis DI, Casper DP, Jiang H, Jiao T, Wang J, Wang X (2018) Dietary supplementation with essential-oils-cobalt for improving growth performance, meat quality and skin cell capacity of goats. Sci Rep 8:11634CrossRefPubMedPubMedCentralGoogle Scholar
  68. Lei Z, Zhang K, Li C, Jiao T, Wu J, Wei Y, Tian K, Li C, Tang D, Davis DI, Casper DP, Jiang H, Wang X, Wang J (2019) Ruminal metagenomic analyses of goat data reveals potential functional microbiota by supplementation with essential oil-cobalt complexes. BMC Microbiol 19:30CrossRefPubMedPubMedCentralGoogle Scholar
  69. Lima PMT, Moreira GD, Sakita GZ, Natel AS, Mattos WT, Gimenes FMA, Gerdes L, McManus C, Abdalla AL, Louvandini H (2018) Nutritional evaluation of the legume Macrotyloma axillare using in vitro and in vivo bioassays in sheep. J Anim Physiol Anim Nutr 102:669–676CrossRefGoogle Scholar
  70. Liu C, Qu YH, Guo PT, Xu CC, Ma Y, Luo HL (2018) Effects of dietary supplementation with alfalfa (Medicago sativa L.) saponins on lamb growth performance, nutrient digestibility, and plasma parameters. Anim Feed Sci Technol 236:98–106CrossRefGoogle Scholar
  71. Liu Y, Ma T, Chen D, Zhang N, Si B, Deng K, Tu Y, Diao Q (2019) Effects of tea saponin supplementation on nutrient digestibility, methanogenesis, and ruminal microbial flora in Dorper crossbred ewe. Animals 9:29CrossRefGoogle Scholar
  72. Lopes SG, Barros LBG, Louvandini H, Abdalla AL, Costa Junior LM (2016) Effect of tanniniferous food from Bauhinia pulchella on pasture contamination with gastrointestinal nematodes from goats. Parasit Vectors 9:102CrossRefPubMedPubMedCentralGoogle Scholar
  73. Lu CD, Jorgensen NA (1987) Alfalfa saponins affect site and extent of nutrient digestion in ruminants. J Nutr 117:919–927CrossRefPubMedGoogle Scholar
  74. Macheboeuf D, Morgavi DP, Papon Y, Mousset JL, Arturo-Schaan M (2008) Dose–response effects of essential oils on in vitro fermentation activity of the rumen microbial population. Anim Feed Sci Technol 145:335–350CrossRefGoogle Scholar
  75. Makkar HPS (2003) Quantification of tannins in tree and shrub foliage. A laboratory manual. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  76. Malik PK, Kolte AP, Baruah L, Saravanan M, Bakshi B, Bhatta R (2017) Enteric methane mitigation in sheep through leaves of selected tanniniferous tropical tree species. Livest Sci 200:29–34CrossRefGoogle Scholar
  77. Marinoa R, Atzori AS, D’andrea M, Iovane G, Trabalza-Marinucci M, Rinald L (2015) Climate change: production performance, health issues, greenhouse gas emissions and mitigation strategies in sheep and goat farming. Small Rumin Res 135:50–59CrossRefGoogle Scholar
  78. McAllister TA, Newbold CJ (2008) Redirecting rumen fermentation to reduce methanogenesis. Aust J Exp Agric 48:7–13CrossRefGoogle Scholar
  79. McCann JC, Wickersham TA, Loor JJ (2014) High-throughput methods redefine the rumen microbiome and its relationship with nutrition and metabolism. Bioinform Biol Insights 8:109–125CrossRefPubMedPubMedCentralGoogle Scholar
  80. McSweeney C, Mackie R (2012) Commission on genetic resources for food and agriculture. Micro-organisms and ruminant digestion: state of knowledge, trends and future prospects. Backgr Study Paper (FAO) 61:1–62Google Scholar
  81. Min BR, Salaiman S, Shange R, Eun JS (2014) Gastrointestinal bacterial and methanogenic archaea diversity dynamics associated with condensed tannin-containing pine bark diet in goats using 16S rDNA amplicon pyrosequencing. Int J Microbiol Hindawi Publishing Corporation, Archaea, Article ID 141909.  https://doi.org/10.1155/2014/141909
  82. Morgavi DP, Forano E, Martin C, Newbold CJ, Anderson RC, Rasmussen MA, Morrison M (2010) Microbial ecosystem and methanogenesis in ruminants. Animal 4:1024–1036CrossRefPubMedGoogle Scholar
  83. Mueller-Harvey I (2006) Unravelling the conundrum of tannins in animal nutrition and health. J Sci Food Agric 86(13):2010–2037CrossRefGoogle Scholar
  84. Naghiloo S, Movafeghi A, Delazar A, Nazemiyeh H, Asnaashari S, Dadpour MR (2012) Ontogenetic variation of total phenolics and antioxidant activity in roots, leaves and flowers of Astragalus compactus Lam. (Fabaceae). BioImpacts 2:105–109PubMedPubMedCentralGoogle Scholar
  85. Ozkan CO, Kamalak A, Atalay AI, Tatliyer A, Kaya E (2015) Effect of peppermint (Mentha piperita) essential oil on rumen microbial fermentation of barley grain. J Appl Anim Res 43:287–290CrossRefGoogle Scholar
  86. Patra AK (2012) Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions. Environ Monit Assess 184:1929–1952CrossRefPubMedGoogle Scholar
  87. Patra AK (2014) Trends and projected estimates of GHG emissions from Indian livestock in comparisons with GHG emissions from world and developing countries. Asian-Australas J Anim Sci 27:592–599CrossRefPubMedPubMedCentralGoogle Scholar
  88. Patra AK, Saxena J (2009) A review of the effect and mode of action of saponins on microbial population and fermentation in the rumen and ruminant production. Nutr Res Rev 22:204–219CrossRefPubMedGoogle Scholar
  89. Patra AK, Saxena J (2010) A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry 71:1198–1222CrossRefPubMedGoogle Scholar
  90. Pellikaan WF, Stringano E, Leenaars J, Bongers DJGM, Van Laar-van Schuppen S, Plant J, Mueller-Harvey I (2011) Evaluating effects of tannins on extent and rate of in vitro gas and CH4 production using an automated pressure evaluation system (APES). Anim Feed Sci Technol 166–167:377–390CrossRefGoogle Scholar
  91. Pen B, Sar C, Mwenya B, Kuwaki K, Morikawa R, Takahashi J (2006) Effects of Yucca schidigera and Quillaja saponaria extracts on in vitro ruminal fermentation and methane emission. Anim Feed Sci Technol 129:175–186CrossRefGoogle Scholar
  92. Pen B, Takaura K, Yamaguchi S, Asa R, Takahashi J (2007) Effects of Yucca schidigera and Quillaja saponaria with or without b-1, 4 galacto oligosaccharides on ruminal fermentation, methane production and nitrogen utilization in sheep. Anim Feed Sci Technol 138:75–88CrossRefGoogle Scholar
  93. Pen B, Sar C, Mwenya B, Takahashi J (2008) Effects of Quillaja saponaria extract alone or in combination with Yucca schidigera extract on ruminal fermentation and methanogenesis in vitro. J Anim Sci 79:193–199CrossRefGoogle Scholar
  94. Qi M, Jakober KD, McAllister TA (2010) Rumen microbiology. In: Hudson RJ (ed) Animal and plant productivity. Encyclopedia of Life Support Systems (EOLSS), Oxford, p 462Google Scholar
  95. Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731CrossRefPubMedPubMedCentralGoogle Scholar
  96. Ramírez-Restrepo CA, Tan C, O’Neill CJ, López-Villalobos N, Padmanabha J, Wang J, McSweeney CS (2016) Methane production, fermentation characteristics, and microbial profiles in the rumen of tropical cattle fed tea seed saponin supplementation. Anim Feed Sci Technol 216:58–67CrossRefGoogle Scholar
  97. Righi F, Simoni M, Foskolos A, Beretti V, Sabbioni A, Quarantelli A (2017) In vitro ruminal dry matter and neutral detergent fibre digestibility of common feedstuffs as affected by the addition of essential oils and their active compounds. J Anim Feed Sci 26:204–212CrossRefGoogle Scholar
  98. Sallam SMA, Bueno ICS, Nasser ME, Abdalla AL (2010) Effect of eucalyptus (Eucalyptus citriodora) fresh or residue leaves on methane emission in vitro. Ital J Anim Sci 9:299–303Google Scholar
  99. Sallam SMA, Abdelgaleil SAM, Bueno ICS, Nasser MEA, Araujo RC (2011) Effect of some essential oils on in vitro methane emission. Arch Anim Nutr 3:203–214CrossRefGoogle Scholar
  100. Sallam SMA, Morsy AS, Soltan YA, Alencar SM, Abdalla AL (2012) Antimethanogenic activity of commercial essential oils products. In: Proceedings of 14th international seminar of FAO-CIHEAM sub-network on sheep and goat nutrition and 2nd symposium low input breeds. Feeding and management strategies to improve livestock productivity, welfare and product quality under climate changesGoogle Scholar
  101. Samal L, Chaudhary LC, Agarwal N, Kamra DN (2016) Effects of plants containing secondary metabolites as feed additives on rumen metabolites and methanogen diversity of buffaloes. Anim Prod Sci 56:472–481CrossRefGoogle Scholar
  102. Saminathana M, Sieoa CC, Ganc HM, Abdullahb N, Wong CMVL, Ho YW (2016) Effects of condensed tannin fractions of different molecular weights on population and diversity of bovine rumen methanogenic archaea in vitro, as determined by high-throughput sequencing. Anim Feed Sci Technol 216:146–160CrossRefGoogle Scholar
  103. Santoso B, Mwenya B, Sar C, Gamo Y, Kobayashi T, Morikawa R, Kimura K, Mizukoshi H, Takahashi J (2004) Effects of supplementing galacto oligosaccharides, Yucca schidigera and nisin on rumen methanogenesis, nitrogen and energy metabolism in sheep. Livest Prod Sci 91:209–217CrossRefGoogle Scholar
  104. Sharma AK, Gangwar M, Kumar D, Nath G, Kumar Sinha AS, Tripathi YB (2016) Phytochemical characterization, antimicrobial activity and reducing potential of seed oil, latex, machine oil and press cake of Jatropha curcas. Avicenna J Phytomed 6:366–375PubMedPubMedCentralGoogle Scholar
  105. Siddiqui ZS, Arif UZ (2004) Effects of benlate systemic fungicide on seed germination, seedling growth, biomass and phenolic contents in two cultivars of Zea mays L. Pak J Bot 36:577–582Google Scholar
  106. Skuce PJ, Morgan ER, Van Dijk J, Mitchell M (2013) Animal health aspects of adaptation to climate change: beating the heat and parasites in a warming Europe. Animal 7:333–345CrossRefPubMedGoogle Scholar
  107. Sliwinski BJ, Kreuzer M, Wettstein HR, Machmuller A (2002) Rumen fermentation and nitrogen balance of lambs fed diets containing plant extracts rich in tannins and saponins and associated emissions of nitrogen and methane. Arch Anim Nutr 56:379–392Google Scholar
  108. Smith AH, Zoetendal E, Mackie RI (2005) Bacterial mechanisms to overcome inhibitory effects of dietary tannins. Microbiol Ecol 50:197–205CrossRefGoogle Scholar
  109. Soltan YA, Morsy AS, Araujo RC, Elziat HM, Sallam SMA (2011) Carvacrol and eugenol as modifiers of rumen microbial fermentation and methane production in vitro. In: Proceedings of 4th animal wealth research conference in the Middle East and North Africa, pp 354–364Google Scholar
  110. Soltan YA, Morsy AS, Sallam SMA, Louvandini H, Abdalla AL (2012) Comparative in vitro evaluation of forage legumes (prosopis, acacia, atriplex, and leucaena) on ruminal fermentation and methanogenesis. J Anim Feed Sci 21:759–772CrossRefGoogle Scholar
  111. Strack D (1997) In: Dey PM, Harborne JB (eds) Phenolic metabolism: plant biochemistry. Harcourt Asia PTE Ltd, Noida, pp 387–390CrossRefGoogle Scholar
  112. Szumacher-Strabel M, Cieslak A (2010) Potential of phytofactors to mitigate rumen ammonia and methane production. J Anim Feed Sci 19:319–337CrossRefGoogle Scholar
  113. Taiz L, Zeiger E (2006) Secondary metabolites and plant defense. Plant Physiol 4:315–344Google Scholar
  114. Takahashi J, Miyagawa T, Kojima Y, Umetsu K (2000) Effects of Yucca schidigera extract, probiotics, monensin and l-cysteine on rumen methanogenesis. Asian Aust J Anim Sci 13:499–501Google Scholar
  115. Tan HY, Sieo CC, Abdullah N, Liang JB, Huang XD, Ho YW (2011) Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim Feed Sci Technol 169:185–193CrossRefGoogle Scholar
  116. Tan HY, Sieo CC, Abdullah N, Liang JB, Huang XD, Ho YW (2013) Effect of condensed tannins on bovine rumen protist diversity based on 18S rRNA gene sequences. J Euk Microbiol 60:98–100CrossRefPubMedGoogle Scholar
  117. Tavendale MH, Meagher IP, Pacheco D, Walker N, Atwood GT, Subathira S (2005) Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa and effects of extractable condensed tannin fractions on methanogenesis. Anim Feed Sci Technol 123(124):403–419CrossRefGoogle Scholar
  118. Varadyova Z, Zelenak I, Sirka P (2000) In vitro study of the rumen and hindgut fermentation of fibrous materials (meadow hay, beech sawdust, wheat straw) in sheep. Anim Feed Sci Technol 83:127–138CrossRefGoogle Scholar
  119. Verma N, Shukla S (2015) Impact of various factors responsible for fluctuation in plant secondary metabolites. J Appl Res Med Arom Plants 2:105–113Google Scholar
  120. Vogels GD, Hoppe WF, Stumm CK (1980) Association of methanogenic bacteria with rumen ciliates. Appl Environ Microbiol 40:608–612PubMedPubMedCentralGoogle Scholar
  121. Voon HC, Bhat R, Gulam R (2012) Flower extracts and their essential oils as potential antimicrobial agents for food uses and pharmaceutical applications. Compr Rev Food Sci Food Saf 11:34–55CrossRefGoogle Scholar
  122. Wadhwa M, Bakshi MPS, Makkar HPS (2016) Modifying gut microbiomes in large ruminants: opportunities in non-intensive husbandry systems. Anim Front 6:27CrossRefGoogle Scholar
  123. Wang Y, McAllister TA, Newbold CJ, Rode LM, Cheeke PR, Cheng KJ (1998) Effect of Yucca schidigera extract on fermentation and degradation of steroidal saponins in the rumen simulation technique (RUSITEC). Anim Feed Sci Technol 74:143–153CrossRefGoogle Scholar
  124. Wang CJ, Wang SP, Zhou H (2009) Influences of flavomycin, ropadiar, and saponin on nutrient digestibility, rumen fermentation, and methane emission from sheep. Anim Feed Sci Technol 148:157–166CrossRefGoogle Scholar
  125. Wang B, Tu Y, Zhao SP, Hao YH, Liu JX, Liu FH, Xiong BH, Jiang LS (2017) Effect of tea saponins on milk performance, milk fatty acids, and immune function in dairy cow. J Dairy Sci 100:8043–8052CrossRefPubMedGoogle Scholar
  126. Weimer PJ (2015) Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations. Front Microbiol 6:296CrossRefPubMedPubMedCentralGoogle Scholar
  127. Yatoo MI, Kumar P, Dimri U, Sharma MC (2012) Effects of climate change on animal health and diseases. Int J Livest Res 2:15–24CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Dinesh Kumar Dhanasekaran
    • 1
  • Tairon Pannunzio Dias-Silva
    • 1
  • Adibe Luiz Abdalla Filho
    • 1
  • Gabriel Zanuto Sakita
    • 1
  • Adibe Luiz Abdalla
    • 1
  • Helder Louvandini
    • 1
  • Mona M. M. Y. Elghandour
    • 2
    Email author
  1. 1.Centre of Nuclear Energy in AgricultureUniversity of São PauloSão PauloBrazil
  2. 2.Facultad de Medicina Veterinaria y ZootecniaUniversidad Autónoma del Estado de MéxicoTolucaMexico

Personalised recommendations