Effects of different regrowth ages and cutting heights on biomass production, bromatological composition and in vitro digestibility of Guazuma ulmifolia foliage
Abstract
Guazuma ulmifolia (G. ulmifolia) is a tropical tree species with potential in ruminant feeding. The objective of this study was to evaluate the biomass production, chemical composition and in vitro digestibility of G. ulmifolia foliage at different regrowth ages and cutting heights in two seasons. Sixty G. ulmifolia trees were selected and distributed in two heights (25 and 50 cm) and three regrowth ages (30, 60 and 90 days). A randomised design with a 2 × 3 × 2 factorial arrangement was used. In both seasons, the biomass production and the nutritional content increased (P < 0.05) with increasing regrowth age, except for crude protein (CP), which was decreased in the dry season (P < 0.05) at a cutting height of 25 cm. In the rainy season, the parameters, dry matter and CP were higher at a cutting height of 25 cm and at 60 and 90 days after regrowth (P < 0.05), while NDF, ADF and hemicellulose were lower (P < 0.05). There was a similar behaviour in the dry season, although at a cutting height of 50 cm. In-vitro digestibility was higher in the rainy period (P < 0.05), although in the dry season, digestibility at a cutting height of 25 cm was greater. In the rainy period, forage should be collected at a height of 25 cm and after a regrowth period of 60 days, while in the dry period, the ideal cutting height is 50 cm, at a regrowth age of 60 days.
Keywords
Ruminants Silvopastoral systems Tropical dry forest Tropical tree fodderNotes
Acknowledgements
The authors are grateful to Research Group on Livestock Agroforestry Systems of the Universidad del Tolima and Agrosavia corporation to assistance through to develop this project. The fund was provided by Universidad del Tolima.
References
- Alatorre-Hernández A, Guerrero-Rodríguez JDD, Olvera-Hernández JI, Aceves-Ruíz E, Vaquera-Huerta H, Vargas-López S (2018) Productividad, características fisicoquímicas y digestibilidad in vitro de leguminosas forrajeras en trópico seco de México Yield performance, physicochemical characteristics and in vitro digestibility of forage legumes in the dry tropic of Mexico. Rev Mex Ciencias Pecu 9:296–315CrossRefGoogle Scholar
- Anjum F, Yaseen M, Rasool E et al (2003) Water stress in barley (Hordeum vulgare L.) on chemical composition and chlorophyl contents. Pak J Agric Sci 40:45–49Google Scholar
- Ansah T, Wilkinson RG, Huntington J, Dei HK (2018) Effects of tropical browse plants on in vitro rumen protein degradability. Livest Res Rural Dev 30:1–10Google Scholar
- AOAC (2012) Official methods of analysis, 19th edn. Association of Official Analytical Chemist, Washington DC, pp 1–21Google Scholar
- Arandas J KG, Ribeiro MN, Pimenta Filho EC, Sliva RCB, Facó O, Esteves S (2012) Estrutura populacional de ovinos da raça Morada Nova. In Embrapa Caprinos e Ovinos-Artigo em anais de congresso (ALICE). 9 Simpósio brasileiro de melhoramento animalGoogle Scholar
- Ashton AQ (2012) Advances in chlorophyll research and application, 2012th edn. ScholarlyEditions, AtlantaGoogle Scholar
- Bacab HM, Solorio FJ, Solorio SB (2012) Efecto de la altura de poda en Leucaena leucocephala y su influencia en el rebrote y rendimiento de Panicum maximum. Av en Investig Agropecu 16:65–77Google Scholar
- Casanova-Lugo F, Petit-Aldana J, Solorio-Sánchez FJ et al (2014a) Forage yield and quality of Leucaena leucocephala and Guazuma ulmifolia in mixed and pure fodder banks systems in Yucatan, Mexico. Agrofor Syst 88:29–39. https://doi.org/10.1007/s10457-013-9652-7 CrossRefGoogle Scholar
- Casanova-Lugo F, Solorio-Sánchez F, Ramírez-Avilés L et al (2014b) Forage yield and quality of Leucaena leucocephala and Guazuma ulmifolia in tropical silvopastoral systems. Trop Grasslands Forrajes Trop 2:24–27. https://doi.org/10.17138/tgft(2)24-26 CrossRefGoogle Scholar
- Castrejón-Pineda FA, Martínez-Pérez P, Corona L et al (2016) Partial substitution of soybean meal by Gliricidia sepium or Guazuma ulmifolia leaves in the rations of growing lambs. Trop Anim Health Prod 48:133–137. https://doi.org/10.1007/s11250-015-0932-2 CrossRefGoogle Scholar
- Chacón-Hernández PA, Vargas-Rodríguez CF (2009) Digestibilidad y calidad del Pennisetum purpureum cv. King grass a tres edades de rebrote. Agron Mesoam 20:399–408. https://doi.org/10.15517/am.v20i2.4956 CrossRefGoogle Scholar
- Escobar F, Sutherland S (1986) Comportamiento de Guazuma ulmifolia Lam. en plantaciones jóvenes en la zona seca de Panamá (No. 20650). CATIE, Turrialba (Costa Rica). Proyecto Cultivo de Arboles de Uso MúltipleGoogle Scholar
- Ezenwa I, Reynolds L, Aken’ova ME et al (1995) Cutting management of alley cropped leucaena/gliricidia-Guinea grass mixtures for forage production in southwestern Nigeria. Agrofor Syst 29:9–20. https://doi.org/10.1007/BF00711278 CrossRefGoogle Scholar
- Fernández R, Fandiño R (2013) Producción de forraje y respuesta de cabras en crecimiento en arreglos silvopastoriles basados en Guazuma ulmifolia, Leucaena leucocephala y Crescentia cujete. Corpoica Cienc y Tecnol Agropecu, p 14Google Scholar
- Francisco AG (1998) Efecto de tres alturas de corte en el rendimiento de biomasa de Leucaena leucocephala cv. CNIA-250. Pastos y Forrajes 21:337–343Google Scholar
- García-Castillo CG, Martínez-Tinajero JJ, Montañez-Valdez OD, Sánchez-Orozco L, Posada-Cruz S, Izaguirre-Flores F, Martínez-Priego G (2008) Degradación ruminal de la materia seca del fruto cuajilote (Parmentiera edulis) Carlos. Zootec Trop 26:1–8Google Scholar
- Giraldo A (1998) Potencial de la arborea guácimo (Guazuma ulmifolia), como componente forrajero en sistemas silvopastoriles. In: Conferencia electrónica de la FAO sobre “Agroforestería para la producción animal en Latinoamérica”Google Scholar
- Gómez M, Murgueitio E (1991) Efecto de la altura de corte sobre la producción de biomasa de nacedero (Trichantera gigantea). Livest Res, Rural DevGoogle Scholar
- Guerrero JA (2014) Plan y Manejo de una Granja Agroforestal. Bachelor’s thesisGoogle Scholar
- Havaux M (1992) Stress tolerance of photosystem II in vivo: antagonistic effects of water, heat, and photoinhibition stresses. Plant Physiol 100:424–432. https://doi.org/10.1104/pp.100.1.424 CrossRefGoogle Scholar
- Holdridge LR, Grenke WC (1971) Forest environments in tropical life zones: a pilot study. Forest environments in tropical life zones: a pilot study, 1st edn. Pergamon Press, Oxford, New YorkGoogle Scholar
- Insuasty-Santacruz E, Apráez-Guerrero E, Gálvez-Cerón A (2013) Caracterización botánica, nutricional y fenológica de especies arbóreas y arbustivas de bosque muy seco tropical. Rev Cienc Anim 6:109–124Google Scholar
- Johan F, Jafri MZ, Lim HS, Wan Maznah WO (2014) Laboratory measurement: Chlorophyll-a concentration measurement with acetone method using spectrophotometer. In: IEEE international conference on industrial engineering and engineering management 2015–Jan, pp 744–748. https://doi.org/10.1109/ieem.2014.7058737
- Lei TT, Tabuchi R, Kitao M, Koike T (1996) Functional relationship between chlorophyll content and leaf reflectance, and light-capturing efficiency of Japanese forest species. Physiol Plant 96:411–418. https://doi.org/10.1111/j.1399-3054.1996.tb00452.x CrossRefGoogle Scholar
- Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382. https://doi.org/10.1016/0076-6879(87)48036-1 CrossRefGoogle Scholar
- Lohman KN, Gan S, John MC, Amasino RM (1994) Molecular anaylsis of natural leaf senescence in Arabidopsis thaliana. Physiol Plant 92:322–328. https://doi.org/10.1111/j.1399-3054.1994.tb05343.x CrossRefGoogle Scholar
- López S, Guevara H, Duchi N, Moreno G (2018) Evaluation of two “in vitro” digestibility tests with the “in vivo” test of Alfalfa (Medicago sativa) in Guinea Pig (Cavia porcellus) Feeding. Eur Sci J (ESJ). https://doi.org/10.19044/esj.2018.v14n6p399 Google Scholar
- Lugo-Soto M, Molina F, Gonzáles I et al (2012) Efecto de la altura y frecuencia de corte sobre la producción de materia seca y proteína bruta de Tithonia diversifolia. Zootec Trop 30:317–325Google Scholar
- Lugo-soto M, Vibert E, Betancourt M, González I (2009) Efecto de la altura y edad de corte en la producción de materia seca y proteína bruta de Cratylia argentea (Desvaux) O. Kuntze bajo condiciones del piedemonte barinés, Venezuela. Zootec Trop 27:457–464Google Scholar
- Manríquez-Mendoza LY, López-Ortíz S, Pérez-Hernández P et al (2011) Agronomic and forage characteristics of Guazuma ulmifolia Lam. Trop Subtrop Agroecosyst 14:453–463Google Scholar
- Medina MG, Garcia DE, Lamela L et al (2006) Producción de biomasa forrajera de morera (Morus alba Linn.) asociada con gramínea en condiciones de pastoreo simulado. Pastos y Forrajes 29:269Google Scholar
- Melgarejo LM (2010) Experimentos en Fisiología Vegetal. p 249Google Scholar
- Noda Y, Martín G, Machado R et al (2007) Efecto de dos frecuencias y alturas de corte en la producción de biomasa de morera (Morus alba Linn.). Zootec Trop 25:261–268Google Scholar
- Ortega-Vargas E, López-Ortiz S, Burgueño-Ferreira JA et al (2013) Date of pruning of Guazuma ulmifolia during the rainy season affects the availability, productivity and nutritional quality of forage during the dry season. Agrofor Syst 87:917–927. https://doi.org/10.1007/s10457-013-9608-y CrossRefGoogle Scholar
- Quintero MY, Pardo JA, Varón RP, Alvear C (2015) Digestibilidad aparente de las gramíneas Bothriochloa saccharoides, Bothriochloa pertusa y Dichanthium annulatum, pp 203–204Google Scholar
- Reyes N, Pasquier F, Francis V (2008) Efecto de diferentes densidades de siembra y alturas de corte sobre la producción de biomasa y composición química de cratylia argentea, pp 1–60Google Scholar
- Rodríguez-Zamora J, Elizondo-Salazar J (2012) Consumo, calidad nutricional y digestibilidad aparente de morera (Morus alba) y pasto estrella (Cynodon nlemfuensis) en cabras. Agron Costarric 36:13–23Google Scholar
- Rincon A, Ligarreto GA, Garay E (2008) Producción de forraje en los pastos Brachiaria decumbens cv. amargo y Brachiaria brizantha cv. toledo, sometidos a tres frecuencias y a dos intensidades de defoliación en condiciones del Piedemonte llanero Colombiano. Rev Fac Nal Agr Medellín 61:4336–4356Google Scholar
- Slanac AL, Kucseva CD, Balbuena O, Rochinotti D (2011) Degradación ruminal en bovinos de la materia seca de Sorghastrum setosum a diferentes edades en época otoñal. Rev Vet 22:105–108Google Scholar
- Sosa R, Pérez D, Ortega L, Zapata G (2004) Evaluación del Potencial Forrajero de arboles y arbustos tropicales para la alimentación de ovinos. Técnica Pecu en México 42:129–144Google Scholar
- Stür WW, Shelton HM, Gutteridge RC (1994) Defoliation management of forage tree legumes. In: Gutteridge R, Shelton HM (eds) Forage tree legumes in tropical agriculture. CAB International, Wallingford, pp 158–167Google Scholar
- Tilley JMA, Terry RA (1963) A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci 18:104–111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x CrossRefGoogle Scholar
- Turcios H (2008) Evaluación del proceso de toma de decisiones para adopción de bancos de proteína de leucaena (Leucaena leucocephala) y su efecto como suplemento nutricional para vacas lactantes en sistemas doble propósito en el Chal, Petén. Guatemala, Tesis MaestGoogle Scholar
- Ulukan H (2011) Responses of cultivated plants and some preventive measures against climate change. Int J Agric Biol 13:292–296Google Scholar
- Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2 CrossRefGoogle Scholar
- Villa-Herrera A, Nava-Tablada ME, López-Ortiz S et al (2009) Utilización del Guácimo (Guazuma ulmifolia lam.) como fuente de forraje en la ganadería bovina extensiva del trópico Mexicano. Trop Subtrop Agroecosyst 10:253–261Google Scholar
- Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313. https://doi.org/10.1016/S0176-1617(11)81192-2 CrossRefGoogle Scholar