Advertisement

Effects of different regrowth ages and cutting heights on biomass production, bromatological composition and in vitro digestibility of Guazuma ulmifolia foliage

  • Diana Cediel-Devia
  • Edwin Sandoval-Lozano
  • Román Castañeda-SerranoEmail author
Article

Abstract

Guazuma ulmifolia (G. ulmifolia) is a tropical tree species with potential in ruminant feeding. The objective of this study was to evaluate the biomass production, chemical composition and in vitro digestibility of G. ulmifolia foliage at different regrowth ages and cutting heights in two seasons. Sixty G. ulmifolia trees were selected and distributed in two heights (25 and 50 cm) and three regrowth ages (30, 60 and 90 days). A randomised design with a 2 × 3 × 2 factorial arrangement was used. In both seasons, the biomass production and the nutritional content increased (P < 0.05) with increasing regrowth age, except for crude protein (CP), which was decreased in the dry season (P < 0.05) at a cutting height of 25 cm. In the rainy season, the parameters, dry matter and CP were higher at a cutting height of 25 cm and at 60 and 90 days after regrowth (P < 0.05), while NDF, ADF and hemicellulose were lower (P < 0.05). There was a similar behaviour in the dry season, although at a cutting height of 50 cm. In-vitro digestibility was higher in the rainy period (P < 0.05), although in the dry season, digestibility at a cutting height of 25 cm was greater. In the rainy period, forage should be collected at a height of 25 cm and after a regrowth period of 60 days, while in the dry period, the ideal cutting height is 50 cm, at a regrowth age of 60 days.

Keywords

Ruminants Silvopastoral systems Tropical dry forest Tropical tree fodder 

Notes

Acknowledgements

The authors are grateful to Research Group on Livestock Agroforestry Systems of the Universidad del Tolima and Agrosavia corporation to assistance through to develop this project. The fund was provided by Universidad del Tolima.

References

  1. Alatorre-Hernández A, Guerrero-Rodríguez JDD, Olvera-Hernández JI, Aceves-Ruíz E, Vaquera-Huerta H, Vargas-López S (2018) Productividad, características fisicoquímicas y digestibilidad in vitro de leguminosas forrajeras en trópico seco de México Yield performance, physicochemical characteristics and in vitro digestibility of forage legumes in the dry tropic of Mexico. Rev Mex Ciencias Pecu 9:296–315CrossRefGoogle Scholar
  2. Anjum F, Yaseen M, Rasool E et al (2003) Water stress in barley (Hordeum vulgare L.) on chemical composition and chlorophyl contents. Pak J Agric Sci 40:45–49Google Scholar
  3. Ansah T, Wilkinson RG, Huntington J, Dei HK (2018) Effects of tropical browse plants on in vitro rumen protein degradability. Livest Res Rural Dev 30:1–10Google Scholar
  4. AOAC (2012) Official methods of analysis, 19th edn. Association of Official Analytical Chemist, Washington DC, pp 1–21Google Scholar
  5. Arandas J KG, Ribeiro MN, Pimenta Filho EC, Sliva RCB, Facó O, Esteves S (2012) Estrutura populacional de ovinos da raça Morada Nova. In Embrapa Caprinos e Ovinos-Artigo em anais de congresso (ALICE). 9 Simpósio brasileiro de melhoramento animalGoogle Scholar
  6. Ashton AQ (2012) Advances in chlorophyll research and application, 2012th edn. ScholarlyEditions, AtlantaGoogle Scholar
  7. Bacab HM, Solorio FJ, Solorio SB (2012) Efecto de la altura de poda en Leucaena leucocephala y su influencia en el rebrote y rendimiento de Panicum maximum. Av en Investig Agropecu 16:65–77Google Scholar
  8. Casanova-Lugo F, Petit-Aldana J, Solorio-Sánchez FJ et al (2014a) Forage yield and quality of Leucaena leucocephala and Guazuma ulmifolia in mixed and pure fodder banks systems in Yucatan, Mexico. Agrofor Syst 88:29–39.  https://doi.org/10.1007/s10457-013-9652-7 CrossRefGoogle Scholar
  9. Casanova-Lugo F, Solorio-Sánchez F, Ramírez-Avilés L et al (2014b) Forage yield and quality of Leucaena leucocephala and Guazuma ulmifolia in tropical silvopastoral systems. Trop Grasslands Forrajes Trop 2:24–27.  https://doi.org/10.17138/tgft(2)24-26 CrossRefGoogle Scholar
  10. Castrejón-Pineda FA, Martínez-Pérez P, Corona L et al (2016) Partial substitution of soybean meal by Gliricidia sepium or Guazuma ulmifolia leaves in the rations of growing lambs. Trop Anim Health Prod 48:133–137.  https://doi.org/10.1007/s11250-015-0932-2 CrossRefGoogle Scholar
  11. Chacón-Hernández PA, Vargas-Rodríguez CF (2009) Digestibilidad y calidad del Pennisetum purpureum cv. King grass a tres edades de rebrote. Agron Mesoam 20:399–408.  https://doi.org/10.15517/am.v20i2.4956 CrossRefGoogle Scholar
  12. Escobar F, Sutherland S (1986) Comportamiento de Guazuma ulmifolia Lam. en plantaciones jóvenes en la zona seca de Panamá (No. 20650). CATIE, Turrialba (Costa Rica). Proyecto Cultivo de Arboles de Uso MúltipleGoogle Scholar
  13. Ezenwa I, Reynolds L, Aken’ova ME et al (1995) Cutting management of alley cropped leucaena/gliricidia-Guinea grass mixtures for forage production in southwestern Nigeria. Agrofor Syst 29:9–20.  https://doi.org/10.1007/BF00711278 CrossRefGoogle Scholar
  14. Fernández R, Fandiño R (2013) Producción de forraje y respuesta de cabras en crecimiento en arreglos silvopastoriles basados en Guazuma ulmifolia, Leucaena leucocephala y Crescentia cujete. Corpoica Cienc y Tecnol Agropecu, p 14Google Scholar
  15. Francisco AG (1998) Efecto de tres alturas de corte en el rendimiento de biomasa de Leucaena leucocephala cv. CNIA-250. Pastos y Forrajes 21:337–343Google Scholar
  16. García-Castillo CG, Martínez-Tinajero JJ, Montañez-Valdez OD, Sánchez-Orozco L, Posada-Cruz S, Izaguirre-Flores F, Martínez-Priego G (2008) Degradación ruminal de la materia seca del fruto cuajilote (Parmentiera edulis) Carlos. Zootec Trop 26:1–8Google Scholar
  17. Giraldo A (1998) Potencial de la arborea guácimo (Guazuma ulmifolia), como componente forrajero en sistemas silvopastoriles. In: Conferencia electrónica de la FAO sobre “Agroforestería para la producción animal en Latinoamérica”Google Scholar
  18. Gómez M, Murgueitio E (1991) Efecto de la altura de corte sobre la producción de biomasa de nacedero (Trichantera gigantea). Livest Res, Rural DevGoogle Scholar
  19. Guerrero JA (2014) Plan y Manejo de una Granja Agroforestal. Bachelor’s thesisGoogle Scholar
  20. Havaux M (1992) Stress tolerance of photosystem II in vivo: antagonistic effects of water, heat, and photoinhibition stresses. Plant Physiol 100:424–432.  https://doi.org/10.1104/pp.100.1.424 CrossRefGoogle Scholar
  21. Holdridge LR, Grenke WC (1971) Forest environments in tropical life zones: a pilot study. Forest environments in tropical life zones: a pilot study, 1st edn. Pergamon Press, Oxford, New YorkGoogle Scholar
  22. Insuasty-Santacruz E, Apráez-Guerrero E, Gálvez-Cerón A (2013) Caracterización botánica, nutricional y fenológica de especies arbóreas y arbustivas de bosque muy seco tropical. Rev Cienc Anim 6:109–124Google Scholar
  23. Johan F, Jafri MZ, Lim HS, Wan Maznah WO (2014) Laboratory measurement: Chlorophyll-a concentration measurement with acetone method using spectrophotometer. In: IEEE international conference on industrial engineering and engineering management 2015–Jan, pp 744–748.  https://doi.org/10.1109/ieem.2014.7058737
  24. Lei TT, Tabuchi R, Kitao M, Koike T (1996) Functional relationship between chlorophyll content and leaf reflectance, and light-capturing efficiency of Japanese forest species. Physiol Plant 96:411–418.  https://doi.org/10.1111/j.1399-3054.1996.tb00452.x CrossRefGoogle Scholar
  25. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382.  https://doi.org/10.1016/0076-6879(87)48036-1 CrossRefGoogle Scholar
  26. Lohman KN, Gan S, John MC, Amasino RM (1994) Molecular anaylsis of natural leaf senescence in Arabidopsis thaliana. Physiol Plant 92:322–328.  https://doi.org/10.1111/j.1399-3054.1994.tb05343.x CrossRefGoogle Scholar
  27. López S, Guevara H, Duchi N, Moreno G (2018) Evaluation of two “in vitro” digestibility tests with the “in vivo” test of Alfalfa (Medicago sativa) in Guinea Pig (Cavia porcellus) Feeding. Eur Sci J (ESJ).  https://doi.org/10.19044/esj.2018.v14n6p399 Google Scholar
  28. Lugo-Soto M, Molina F, Gonzáles I et al (2012) Efecto de la altura y frecuencia de corte sobre la producción de materia seca y proteína bruta de Tithonia diversifolia. Zootec Trop 30:317–325Google Scholar
  29. Lugo-soto M, Vibert E, Betancourt M, González I (2009) Efecto de la altura y edad de corte en la producción de materia seca y proteína bruta de Cratylia argentea (Desvaux) O. Kuntze bajo condiciones del piedemonte barinés, Venezuela. Zootec Trop 27:457–464Google Scholar
  30. Manríquez-Mendoza LY, López-Ortíz S, Pérez-Hernández P et al (2011) Agronomic and forage characteristics of Guazuma ulmifolia Lam. Trop Subtrop Agroecosyst 14:453–463Google Scholar
  31. Medina MG, Garcia DE, Lamela L et al (2006) Producción de biomasa forrajera de morera (Morus alba Linn.) asociada con gramínea en condiciones de pastoreo simulado. Pastos y Forrajes 29:269Google Scholar
  32. Melgarejo LM (2010) Experimentos en Fisiología Vegetal. p 249Google Scholar
  33. Noda Y, Martín G, Machado R et al (2007) Efecto de dos frecuencias y alturas de corte en la producción de biomasa de morera (Morus alba Linn.). Zootec Trop 25:261–268Google Scholar
  34. Ortega-Vargas E, López-Ortiz S, Burgueño-Ferreira JA et al (2013) Date of pruning of Guazuma ulmifolia during the rainy season affects the availability, productivity and nutritional quality of forage during the dry season. Agrofor Syst 87:917–927.  https://doi.org/10.1007/s10457-013-9608-y CrossRefGoogle Scholar
  35. Quintero MY, Pardo JA, Varón RP, Alvear C (2015) Digestibilidad aparente de las gramíneas Bothriochloa saccharoides, Bothriochloa pertusa y Dichanthium annulatum, pp 203–204Google Scholar
  36. Reyes N, Pasquier F, Francis V (2008) Efecto de diferentes densidades de siembra y alturas de corte sobre la producción de biomasa y composición química de cratylia argentea, pp 1–60Google Scholar
  37. Rodríguez-Zamora J, Elizondo-Salazar J (2012) Consumo, calidad nutricional y digestibilidad aparente de morera (Morus alba) y pasto estrella (Cynodon nlemfuensis) en cabras. Agron Costarric 36:13–23Google Scholar
  38. Rincon A,  Ligarreto GA, Garay E (2008) Producción de forraje en los pastos Brachiaria decumbens cv. amargo y Brachiaria brizantha cv. toledo, sometidos a tres frecuencias y a dos intensidades de defoliación en condiciones del Piedemonte llanero Colombiano. Rev Fac Nal Agr Medellín 61:4336–4356Google Scholar
  39. Slanac AL, Kucseva CD, Balbuena O, Rochinotti D (2011) Degradación ruminal en bovinos de la materia seca de Sorghastrum setosum a diferentes edades en época otoñal. Rev Vet 22:105–108Google Scholar
  40. Sosa R, Pérez D, Ortega L, Zapata G (2004) Evaluación del Potencial Forrajero de arboles y arbustos tropicales para la alimentación de ovinos. Técnica Pecu en México 42:129–144Google Scholar
  41. Stür WW, Shelton HM, Gutteridge RC (1994) Defoliation management of forage tree legumes. In: Gutteridge R, Shelton HM (eds) Forage tree legumes in tropical agriculture. CAB International, Wallingford, pp 158–167Google Scholar
  42. Tilley JMA, Terry RA (1963) A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci 18:104–111.  https://doi.org/10.1111/j.1365-2494.1963.tb00335.x CrossRefGoogle Scholar
  43. Turcios H (2008) Evaluación del proceso de toma de decisiones para adopción de bancos de proteína de leucaena (Leucaena leucocephala) y su efecto como suplemento nutricional para vacas lactantes en sistemas doble propósito en el Chal, Petén. Guatemala, Tesis MaestGoogle Scholar
  44. Ulukan H (2011) Responses of cultivated plants and some preventive measures against climate change. Int J Agric Biol 13:292–296Google Scholar
  45. Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597.  https://doi.org/10.3168/jds.S0022-0302(91)78551-2 CrossRefGoogle Scholar
  46. Villa-Herrera A, Nava-Tablada ME, López-Ortiz S et al (2009) Utilización del Guácimo (Guazuma ulmifolia lam.) como fuente de forraje en la ganadería bovina extensiva del trópico Mexicano. Trop Subtrop Agroecosyst 10:253–261Google Scholar
  47. Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313.  https://doi.org/10.1016/S0176-1617(11)81192-2 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Research Group on Livestock Agroforestry Systems - Faculty of Veterinary Medicine and ZootechnicsUniversidad del TolimaIbaguéColombia

Personalised recommendations