Erythrina variegata quality in the Cauto Valley, Cuba

  • D. M. VerdeciaEmail author
  • R. S. Herrera
  • J. L. Ramírez
  • M. Paumier
  • R. Bodas
  • S. Andrés
  • F. J. Giráldez
  • C. Valdés
  • Y. Arceo
  • Y. Álvarez
  • Y. Méndez-Martínez
  • S. López


This experiment has examined the effects of age of regrowth (60, 120 or 180 days) and season (dry or rainy period) on the nutritional quality of roughage from Erythrina variegata harvested in the Cauto Valley, Cuba. A randomized block design with three replicates was used. Proximate and mineral composition, in vitro and in situ dry matter digestibility were evaluated, in addition to the secondary metabolites (tannins, phenols, verbascose, stachyose, raffinose, flavonoids, triterpenes and steroids) at different ages of regrowth, in both seasons of the year. There was a significant interaction between treatments for most of the nutritional components or digestibility coefficients analyzed, although the pattern followed with age of regrowth was similar in both seasons. The gas production increased with the age of regrowth and the higher value was obtained during the dry season, while the lag phase was longer in the rainy season. The results of this study show the marked effect of climatic factors on the nutritive quality of E. variegata. In general, as maturity was increased the concentrations of secondary metabolites also increased, but only condensed tannins were close to the limits for which ruminal fermentations can be affected. All these aspects should be considered in this species when it is used in animal feeding.


Maturity Digestibility Forage Metabolites 



  1. Ammar H, López S, Bochi O, García R, Ranilla MJ (1999) Composition and in vitro digestibility of leaves and stems of grasses and legumes harvested from permanent mountain meadows at different maturity stages. J Anim Feed Sci 8:599–610CrossRefGoogle Scholar
  2. AOAC (2000) Official methods of analysis, vol 2, 17th edn. Association of Official Analytical Chemists, WashingtonGoogle Scholar
  3. Aumont G, Caudron I, Saminadin G, Xandé A (1995) Sources of variation in nutritive values of tropical forages from the Caribbean. Anim Feed Sci Technol 51:1–13. CrossRefGoogle Scholar
  4. Bohm BA, Kocipai-Abyazan R (1994) Flavonoids and condensed tannins from leaves of Hawaiian Vaccinium reticulatum and V. calycynumm (Ericaceae). Pac Sci 48:458–463Google Scholar
  5. Caceres O, Gonzalez E (2000) Metodología para la determinación del valor nutritivo de los forrajes tropicales. Pastos y Forrajes 23:87–101Google Scholar
  6. Caceres O, Gonzalez E (2002) Valor nutritivo de árboles, arbustos y otras plantas forrajeras para los rumiantes. Pastos y Forrajes 25:15–20Google Scholar
  7. Cardenas LA, Bautista JL, Zegarra JL, Ramos R (2013) Degradabilidad ruminal de la fibra del follaje pisonay (Erythrina sp). Revista Complutense de Ciencias Veterinarias 7:42–49. Google Scholar
  8. Cardenas-Villanueva LA, Bautista-Pampa JL, Zegarra-Paredes JL, Gomez-Quispe OE, Barreto-Carbajal JS (2016) Degradabilidad in situ de la materia seca y proteína cruda de las hojas y peciolo del pisonay (Erythrina falcata). Rev Investig Vet Peru 27:39–44. CrossRefGoogle Scholar
  9. Choque H, Huaita A, Cardenas LA, Ramos R (2018) Efecto de la edad de rebrote en la degradación ruminal del pisonay (Erythrina sp) en el valle interandino de Abancay. J High Andean Res 20:189–202Google Scholar
  10. Fan JP, He CH (2006) Simultaneous quantification of three major bioactive triterpene acids in the leaves of Diospyros kaki by high-performance liquid chromatography method. J Pharm Biomed Anal 41:950–956. CrossRefGoogle Scholar
  11. France J, Dhanoa MS, Theodorou MK, Lister SJ, Davies SJ, Isac D (1993) A model to interpret gas accumulation profiles with in vitro degradation of ruminant feeds. J Theor Biol 163:99–111. CrossRefGoogle Scholar
  12. Galindo WF, Rosales M, Murgueitio E, Larrahondo J (1989) Sustancias antinutricionales en las hojas de guamo, nacedero y matarratón. Livest Res Rural Dev 1, Article #7. Accessed 7 Feb 2019
  13. Garcia DE, Medina MG (2005) Metodología para el estudio de los compuestos polifenólicos en especies forrajeras. Un enfoque histórico. Zootec Trop 23:261–296Google Scholar
  14. Garcia MR, Soto H, Vibrans H (2001) Erythrina americana Miller (Colorín, Fabaceae), a versatile resourse from México: a review. Econ Bot 55:391–400. CrossRefGoogle Scholar
  15. Garcia DE, Medina MG, Humbría J, Domínguez CE, Baldizán A, Cova LJ, Soca M (2006) Composición proximal, niveles de metabolitos secundarios y valor nutritivo del follaje de algunos árboles forrajeros tropicales. Archivos de Zootecnia 55:373–384Google Scholar
  16. Garcia DE, Wencomo HB, Medina MG, Noda Y, Cova LJ, Spengler I (2008) Evaluación de la calidad nutritiva de siete ecotipos de Leucaena macrophylla (Benth.) en un suelo ferralítico rojo lixiviado. Rev Fac Agron (LUZ) 25:43–67Google Scholar
  17. Garcia DE, Wencomo H, Medina MG, Moratinos P, Cova LJ (2009) Caracterización de la calidad nutritiva de 53 accesiones del género Leucaena en condiciones tropicales. Pastos y Forrajes 32:1–16Google Scholar
  18. Goering MK, Van Soest PJ (1970) Forage fiber analysis (apparatus, reagents, procedures and some applications). Agricultural, USDA, WashingtonGoogle Scholar
  19. Górecki RJ (2000) Seed physiology and biochemistry. In: Hedley CL (ed) Carbohydrates in grain legumes seeds, improving nutritional quality and agronomic characteristics. CABI Publishing, Norwich, pp 117–138CrossRefGoogle Scholar
  20. Ibarra E, Pacheco M, Garcia R, San Miguel R, Ramirez G, Soto R (2011) Actividad antioxidante de alcaloides de Erythrina americana Miller. Rev Fitotec Mex. 34:241–246. Accessed 7 Feb 2019
  21. Kadlec P (2000) Carbohydrate chemistry. In: Hedley CL (ed) Carbohydrates in grain legumes seeds, improving nutritional quality and agronomic characteristics. CABI Publishing, Norwich, pp 15–59CrossRefGoogle Scholar
  22. Labrada J, Guevara G, Estevez J, Martínez S, Pedraza R (2001) Evaluación de algunos indicadores de la composición química del follaje de Erythrina variegata. Rev Prod Anim 13:35–39Google Scholar
  23. Lopez S, Dhanoa MS, Dijkstra J, Bannink A, Kebreab A, France J (2007) Some methodological and analytical considerations regarding application of the gas production technique. Anim Feed Sci Technol 135:139–156. CrossRefGoogle Scholar
  24. Makkar HPS (2003) Quantification of tannins in tree and shrub foliage: a laboratory manual. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  25. Medina MG, Garcia DE, Gonzales ME, Cova LJ, Moratinos P (2009) Variables morfo-estructurales y de la calidad de la biomasa de Tithonia diversifolia en la etapa inicial de crecimiento. Zootec Trop 27:121–134Google Scholar
  26. Menke KH, Steingass H (1988) Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Dev 28:7–55Google Scholar
  27. Mossi AJ, Mazutti M, Paroul N, Corazza ML, Dariva C, Cansian RL, Oliveira JV (2009) Chemical variation of tannins and triterpenes in Brazilian populations of Maytenus ilicifolia Mart. Ex Reiss. Braz J Biol 69:339–345CrossRefGoogle Scholar
  28. Muzquiz M, Cuadrado C, Ayet G, De la Cuadra C, Burbano C, Osagie A (1994) Variation of alkaloid components of lupin seeds in 49 genotypes of Lupinus albus L. from different countries and location. J Agric Food Chem 42:1447–1450. CrossRefGoogle Scholar
  29. Nogueira-Filho JCM, Fondevila M, Barrios-Urdaneta A, González-Ronquillo M (2000) In vitro microbial fermentation of tropical grasses at an advaced maturity stages. Anim Feed Sci Technol 83:145–147. CrossRefGoogle Scholar
  30. Obdoni BO, Ochuko PO (2001) Phytochemical studies and comparative efficacy of the crude extract of some homostatic plants plants in Edo and Delta States of Nigeria. Glob J Pure Appl Sci 8b:203–208. Google Scholar
  31. Ørskov ER (2000) The in situ technique for the estimation of forage degradability in ruminants. In: Givens DI, Owen E, Axford RFE, Omed HA (eds) Forage evaluation in ruminant nutrition. CAB International, Norwich, pp 175–198CrossRefGoogle Scholar
  32. Paredes-Lopez D, Robles-Huaynate R, Cordova-Chumbes O, De la Cruz-Paucar E (2017) Efecto de la harina de hojas de Erythrina sp. sobre el perfil bioquímico, parámetros biológicos e histopatología del hígado de Cavia porcellus. Sci Agropecu 8:297–304. CrossRefGoogle Scholar
  33. Porter L, Hrstich L, Chan B (1986) The conversion of procyanidins and prodelphinidins to cianidin and delphidin. Phytochemistry 25:223–230. CrossRefGoogle Scholar
  34. Ramirez JL, Herrera RS, Leonard I, Verdecia DM, Alvarez Y (2012) Relación de los indicadores de la calidad y la edad en dos especies de Brachiaria. REDVET- Revista Electrónica de Veterinaria 13. Accessed 7 Feb 2019
  35. Rivera JE, Cuartas CA, Naranjo JF, Tafur O, Hurtado EA, Arena FA, Chara J, Murgueitio E (2015) Efecto de la oferta y el consumo de Tithonia diversifolia en un sistema silvopastoril intensivo (SSPi), en la calidad y productividad de leche bovina en el piedemonte Amazónico colombiano. Livest Res Rural Dev 27, Article #189. Accessed 7 Feb 2019
  36. Rodriguez Y, Chongo B, La OO, Oramas A, Scull I, Achang G (2005) Características químicas de Albizia lebbeck y determinación de su potencial nutritivo mediante la técnica de producción de gas in vitro. Revista Cubana de Ciencia Agrícola 39:313–318Google Scholar
  37. Salem AZM, Salem MZM, El-Adawy MM, Robinson PH (2006) Nutritive evaluations of some browse tree foliages during the dry season: secondary compounds, feed intake and in vivo digestibility in sheep and goats. Anim Feed Sci Technol 127:251–267. CrossRefGoogle Scholar
  38. Sirohi SK, Pandey N, Goel N, Singh B, Mohini M, Pandey P, Chaudhry PP (2009) Microbial activity and ruminal methanogenesis as affected by plant secondary metabolites in different plant extracts. Int J Environ Sci Eng 1:52–58CrossRefGoogle Scholar
  39. Soil Survey Staff (2003) Keys to soil taxonomy, 9th edn. United States Department of Agriculture, WashingtonGoogle Scholar
  40. Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J (1994) A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol 48:185–197. CrossRefGoogle Scholar
  41. Torbatinejad N, Galeshi S, Ghoorchi T (2009) Evaluation by chemical and in vitro gas production techniques of foxtail millet grown in Northern Iran. J Anim Vet Adv 8:2662–2667Google Scholar
  42. Verdecia DM, Herrera RS, Ramirez JL, Leonard I, Álvarez Y, Bazan Y, Arceo Y, Bodas R, Andrés S, Alvarez J, Giráldez FJ, López S (2012) Valor nutritivo de Leucaena leucocephala, con énfasis en el contenido de metabolitos secundarios. REDVET- Revista Electrónica de Veterinaria 13. Accessed 7 Feb 2019
  43. Verdecia DM, Herrera RS, Ramirez JL, Leonard I, Bodas R, Andres S, Giraldez FJ, Gonzalez JS, Arceo Y, Alvarez Y, Lopez S (2013) Effect of the re-growth age on the nutritive quality of Neonotonia wightii in the Cauto valley, Cuba. Cuban J Agric Sci 47:89–95Google Scholar
  44. Viajayakumari K, Siddhuraju P, Janardhanan K (1995) Effects of various water or hydrothermal treatments on certain antinutritional compounds in the seeds of the tribal pulse, Dolichos lablab var. vulgaris L. Plant Foods Hum Nutr 48:17–29. CrossRefGoogle Scholar
  45. Vilhena S, Câmara F, Piza I, Lima G (2003) Contenido de fructanos en raíces de Yacón (Polymnia sonchifolia). Ciencia y Tecnología Alimentaria 4:35–40. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Centro de Estudio de producción AnimalUniversidad de GranmaBayamoCuba
  2. 2.Instituto de Ciencia AnimalSan José de las LajasCuba
  3. 3.Instituto Tecnológico Agrario (ITACYL), Junta de Castilla y LeónValladolidSpain
  4. 4.Instituto de Ganadería de Montaña (IGM)CSIC-Universidad de LeónGrulleros, LeónSpain
  5. 5.Universidad Técnica Estatal de Quevedo, Extensión La ManáMocacha-Los RíosEcuador
  6. 6.Instituto de Ganadería de Montaña (IGM), CSIC-Universidad de León, Departamento de Producción AnimalUniversidad de LeónLeónSpain

Personalised recommendations