Advertisement

Antimicrobial and antihelminthic impacts of black cumin, pawpaw and mustard seeds in livestock production and health

  • Moyosore J. Adegbeye
  • Mona M. M. Y. Elghandour
  • Tolulope O. Faniyi
  • Nallely Rivero Perez
  • Alberto Barbabosa-Pilego
  • Adrian Zaragoza-Bastida
  • Abdelfattah Z. M. Salem
Article

Abstract

The resistance of microbial strain to the use of medically important antibiotics, high cost of production, and the resistance of ecto and endoparasite to anthelminthic and acaricidal is a cause for concern. There has been intensified effort in search for alternatives to synthetic drugs. Such alternative must be able to kill, reduce, or inhibit pathogenic microbial population while improving the commensal microbes’. Black cumin (Nigella sativa Linn.), pawpaw (Carica papaya Linn.) and mustard (Brassica nigra Linn.) seeds fit into those categories. The antimicrobial functions of black seeds, is preventing the formation of biofilm among microbial strain. The glucosinolate compound in it could be degraded in 48 h by incubating it with fungi (Aspergillus sp. NR-4201) strain. Similarly, Enterobacter cloacae is capable of degrading benzyl isothiocyanate content of mustard. The 15% inclusion of mustard oil in vitro was capable of reducing methane formation. Sinapine a derivative of mustard is cable of enhancing the growth of some microbes except Escherichia coli and thus a potential probiotics. Pawpaw seed is very potent in their control of wide range of ecto and endo parasites. However, seeds of black cumin, pawpaw and mustard might be incorporated into livestock nutrition.

Keywords

Allyl isothiocyanate Benzyl isothiocyanate Livestock Thymoquinone Tropical plants 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abd El-Hack ME, Mahgoub SA, Hussein MMA, Saadeldin IM (2018) Improving growth performance and health status of meat-type quail by supplementing the diet with black cumin cold-pressed oil as a natural alternative for antibiotics. Environ Sci Pollut Res 25:1157–1167CrossRefGoogle Scholar
  2. Abul-Fadl M, El-Badry N, Ammar M (2011) Nutritional and chemical evaluation for two different varieties of mustard seeds. World Appl Sci J 15:1225–1233Google Scholar
  3. Ahmad A, Husain A, Mujeeb M, Khan SA, Najmi AK, Siddique NA, Damanhouri ZA, Anwar F (2013) A review on therapeutic potential of Nigella sativa: a miracle herb. Asian Pac J Trop Biomed 3:337–352CrossRefPubMedCentralPubMedGoogle Scholar
  4. Ahn E, Kim J, Shin D (2001) Antimicrobial effects of allyl isothiocyanate on several microorganisms. Korean J Food Sci Technol 31:206–211Google Scholar
  5. Akhtar MS (1988) Anthelmintic evaluation of indigenous medicinal plants for veterinary usage. Final report of the PARC Research Project (1985-86), University of Agriculture PakistanGoogle Scholar
  6. Ameen SA, Adedeji OS, Ojedapo LO, Salihu T, Fabusuyi CO (2010) Anthelmintic potency of pawpaw (Carica papaya) seeds in West African Dwarf (WAD) sheep. Glob Vet 5:30–34Google Scholar
  7. Ansari AA, Hassan S, Kenne L, Atta-ur-Rehman S, Wehler T (1988) Structural studies on a saponin isolated from Nigella sativa. Phytochemistry 27:3977–3979CrossRefGoogle Scholar
  8. Augustin JM, Kuzina V, Andersen SB, Bak S (2011) Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 72:435–457CrossRefPubMedGoogle Scholar
  9. Badary OA, Taha RA, Gamal El-Din AM, Abdel-Wahab MH (2003) Thymoquinone is a potent superoxide anion scavenger. Drug Chem Toxicol 26:87CrossRefPubMedGoogle Scholar
  10. Barroso PTW, de Carvalho PP, Rocha TB, Pessoa FLP, Azevedo DA, Mendes MF (2016) Evaluation of the composition of Carica papaya L. seed oil extracted with supercritical CO2. Biotechnol Rep 11:110–116CrossRefGoogle Scholar
  11. Biomin (2016) What’s wrong with my herd? Part 2: endotoxins science and solutions: a magazine of Biomin®. Ruminant issue #37:1–9Google Scholar
  12. Calder PC (2012) Mechanisms of action of (n − 3) fatty acids. J Nutr 142:592–599CrossRefGoogle Scholar
  13. Cartea ME, Francisco M, Soengas P, Velasco P (2010) Phenolic compounds in brassica vegetables. Molecules 16:251–280CrossRefPubMedCentralPubMedGoogle Scholar
  14. Cetin-Karaca H (2011) Evaluation of natural antimicrobial phenolic compounds against foodborne pathogens. Dissertation, University of KentuckyGoogle Scholar
  15. Chaieb K, Kouidhi B, Jrah H, Mahdouani K, Bakhrouf A (2011) Antibacterial activity of thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complement Altern Med 11:29CrossRefPubMedCentralPubMedGoogle Scholar
  16. Chapkin RS, Wang N, Fan YY, Lupton JR, Prior IA (2008) Docosahexaenoic acid alters the size and distribution of cell surface microdomains. Biochim Biophys Acta 1778:466–471CrossRefPubMedGoogle Scholar
  17. Clamp AG, Ladha S, Clark DC, Grimble RF, Lund EK (1997) The influence of dietary lipids on the composition and membrane fluidity of rat hepatocyte plasma membrane. Lipids 32:179–184CrossRefPubMedGoogle Scholar
  18. Clemente I, Aznar M, Silva F, Nerín C (2016) Antimicrobial properties and mode of action of mustard and cinnamon essential oils and their combination against foodborne bacteria. Innov Food Sci Emerg Technol 36:26–33CrossRefGoogle Scholar
  19. Coleman JJ, Okoli I, Tegos GP, Holson EB, Wagner FF, Hamblin MR, Mylonakis E (2010) Characterization of plant-derived saponin natural products against Candida albicans. Am Chem Soc Chem Biol 5:321–332Google Scholar
  20. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582CrossRefPubMedCentralPubMedGoogle Scholar
  21. Cueva C, Moreno-Arribas MV, Martín-Alvarez PJ, Bills G, Vicente MF, Basilio A, Rivas CL, Requena T, Rodríguez JM, Bartolomé B (2010) Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Res Microbiol 161:372–382CrossRefPubMedGoogle Scholar
  22. Cui W, Eskin NA (1998) Processing and properties of mustard products and components. In: Mazza G (ed) Functional foods: biochemical and processing aspects. Technomic Publishing, Lancaster, pp 235–264Google Scholar
  23. Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356CrossRefPubMedGoogle Scholar
  24. Cushnie TPT, Lamb AJ (2011) Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 38:99–107CrossRefPubMedGoogle Scholar
  25. Dada FA, Nzewuji FO, Esan AM, Oyeleye SI, Adegbola VB (2016) Phytochemical and antioxidant analysis of aqueous extracts of unripe pawpaw (Carica papaya Linn.) fruit’s peel and seed. Int J Recent Res Appl Stud 27:68–71Google Scholar
  26. Darakhshan S, Bidmeshki A, Pour A, Colagar H, Sisakhtnezhad S (2015) Thymoquinone and its therapeutic potentials. Pharm Res 138:95–96Google Scholar
  27. De Pablo MA, De Cienfuegos GA (2000) Modulatory effects of dietary lipids on immune system functions. Immunol Cell Biol 78:31–39CrossRefPubMedGoogle Scholar
  28. Delaquis PJ, Mazza G (1995) Antimicrobial properties of isothiocyanates in food preservation. Food Technol 49:73–78Google Scholar
  29. Desai SD, Saheb SH, Das KK, Haseena S (2015) Phytochemical analysis of Nigella sativa and it`s antidiabetic effect. J Pharm Sci Res 7:527–532Google Scholar
  30. Dufour V, Alazzam B, Ermel G, Thepaut M, Rossero A, Tresse O, Baysse C (2012) Antimicrobial activities of isothiocyanates against Campylobacter jejuni isolates. Front Cell Infect Microbiol 53:1–13Google Scholar
  31. Dufour V, Stahl M, Baysse C (2015) The antibacterial properties of isothiocyanates. Microbiology 161:229–243CrossRefPubMedGoogle Scholar
  32. Duncan AJ, Milne JA (1992) Rumen microbial degradation of allyl cyanide as a possible explanation for the tolerance of sheep to Brassica-derived glucosinolates. J Sci Food Agric 58:15–19CrossRefGoogle Scholar
  33. El-Nagerabia SA, Al-Bahryb SN, El-shafieb AE, Al-Hilalib S (2012) Effect of Hibiscus sabdariffa extract and Nigella sativa oil on the growth and aflatoxin B1 production of Aspergillus flavus and Aspergillus parasiticus strains. Food Control 25:59–63CrossRefGoogle Scholar
  34. Engels C, Schieber A, Gänzle MG (2012) Sinapic acid derivatives in defatted oriental mustard (Brassica juncea L.) seed meal extracts using UHPLC-DAD-ESI-MS and identification of compounds with antibacterial activity. Eur Food Res Technol 234:535–542CrossRefGoogle Scholar
  35. Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51CrossRefPubMedGoogle Scholar
  36. Fahmi R (2016) Antioxidant and antibacterial properties of endogenous phenolic compounds from commercial mustard products. Dissertation, University of ManitobaGoogle Scholar
  37. Feroza S, Arijo AG, Zahid IR (2017) Effect of papaya and neem seeds on Ascaridia galli infection in broiler chicken. Pak J Nematol 35:105–111CrossRefGoogle Scholar
  38. Forouzanfar F, Bazzaz BSF, Hosseinzadeh H (2014) Black cumin (Nigella sativa) and its constituent (thymoquinone): a review on antimicrobial effects. Iran J Basic Med Sci 17:929–938PubMedCentralPubMedGoogle Scholar
  39. Frazie MD, Kim MJ, Ku KM (2017) Health-promoting phytochemicals from 11 mustard cultivars at baby leaf and mature stages. Molecules 1:1–13Google Scholar
  40. Gharby S, Harhar H, Guillaume D, Roudani A, Boulbaroud S, Ibrahimi M, Ahmad M, Sultana S, Hadda TB, Chafchaouni-Moussaoui I, Charrouf Z (2015) Chemical investigation of Nigella sativa L. seed oil produced in Morocco. J Saudi Soc Agric Sci 14:172–177Google Scholar
  41. Goel S, Mishra P (2018) Thymoquinone inhibits biofilmformation and has selective antibacterial activity due to ROS generation. Appl Microbio Biotechnol 102:1955–1967CrossRefGoogle Scholar
  42. Goosen TC, Mills DE, Hollenberg PF (2001) Effects of benzyl isothiocyanate on rat and human cytochromes P450: identification of metabolites formed by P450 2B1. J Pharmacol Exp Ther 296:198–206PubMedGoogle Scholar
  43. Herzallah S, Holley R (2012) Determination of sinigrin sinalbin, allyl-and benzyl isothiocyanates by RP-HPLC in mustard powder extracts. LWT Food Sci Technol 47:293–299CrossRefGoogle Scholar
  44. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332CrossRefPubMedGoogle Scholar
  45. Hu Y, Urig S, Koncarevic S, Wu X, Fischer M, Rahlfs S, Mersch-Sundermann V, Becker K (2007) Glutathione-and thioredoxin-related enzymes are modulated by sulfur-containing chemopreventive agents. Biol Chem 388:1069–1081PubMedGoogle Scholar
  46. Jamroz D, Kamel C (2002) Plant extracts enhance broiler performance. In non ruminant nutrition: antimicrobial agents and plant extracts on immunity, health and performance. J Anim Sci 80:41Google Scholar
  47. Javed S, Shahid AA, Haider MS, Umeera A, Ahmad R, Mushtaq S (2012) Nutritional, phytochemical potential and pharmacological evaluation of Nigella sativa (Kalonji) and Trachyspermum ammi (Ajwain). J Med Plants Res 6:768–775Google Scholar
  48. Jeong WS, Keum YS, Chen C, Jain MR, Shen G, Kim JH, Li W, Kong AN (2005) Differential expression and stability of endogenous nuclear factor E2-related factor 2 (Nrf2) by natural chemopreventive compounds in HepG2human hepatoma cells. J Biochem Mol Biol 38:167–176PubMedGoogle Scholar
  49. Kakimoto Y, Armstrong MD (1962) The phenolic amines of human urine. J Biol Chem 237:208–214PubMedGoogle Scholar
  50. Kawakishi S, Kaneko T (1987) Interaction of proteins with allyl isothiocyanate. J Agric Food Chem 35:85–88CrossRefGoogle Scholar
  51. Kermanshai R, McCarry BE, Rosenfeld J, Summers PS, Weretilnyk EA, Sorger GJ (2001) Benzyl isothiocyanate is the chief or sole anthelmintic in papaya seed extracts. Phytochemistry 57:427–435CrossRefPubMedGoogle Scholar
  52. Khan MA (1999) Chemical composition and medicinal properties of Nigella sativa Linn. Inflammopharmacology 7:15–35CrossRefPubMedGoogle Scholar
  53. Khan SH, Ansari J, Haq A, Abbas G (2012) Black cumin seeds as phytogenic product in broiler diets and its effects on performance, blood constituents, immunity and caecal microbial Population. Ital J Anim Sci 11:438–444CrossRefGoogle Scholar
  54. Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513CrossRefPubMedGoogle Scholar
  55. Kubo I, Muroi H, Kubo A (1995) Structural functions of antimicrobial long-chain alcohols and phenols. Bioorg Med Chem Lett 3:873–880CrossRefGoogle Scholar
  56. Kumar NS, Devi SPS (2017) The surprising health benefits of papaya seeds: a review. J Pharmacogn Phytochem 6:424–429Google Scholar
  57. Kumara SS, Huat BT (2001) Extraction, isolation and characterization of anti-tumour principle, alpha-hedrin, from the seeds of Nigella sativa. Planta Med 67:29–32CrossRefPubMedGoogle Scholar
  58. Larsen PO (1965) Occurrence of p-hydroxybenzylamine in white mustard (Sinapis alba L.). Biochem Biophys Acta 107:134–136CrossRefPubMedGoogle Scholar
  59. Lohidas J, Manjusha S, Jothi GGG (2015) Antimicrobial activities of Carica papaya L. Plant Arch 15:1179–1186Google Scholar
  60. Luciano FB, Holley RA (2009) Enzymatic inhibition by allyl isothiocyanate and factors affecting its antimicrobial action against Escherichia coli O157:H7. Int J Food Microbiol 131:240–245CrossRefPubMedGoogle Scholar
  61. Lutterodt H, Luther M, Slavin M, Yin JJ, Parry J, Gao JM, Yu L (2010) Fatty acid profile thymoquinone content, oxidative stability and antioxidant properties of cold-pressed black cumin seed oils. LWT Food Sci Technol 43:1409–1413CrossRefGoogle Scholar
  62. Mah T-F, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39CrossRefPubMedGoogle Scholar
  63. Mahmoudvand H, Dezaki ES, Kheirandish F, Ezatpour B, Jahanbakhsh S, Harandi MF (2014) Scolicidal effects of black cumin seed (Nigella sativa) essential oil on hydatid cysts. Korean J Parasitol 52:653–659CrossRefPubMedCentralPubMedGoogle Scholar
  64. Maisarah AM, Asmah R, Fauziah O (2014) Proximate analysis, antioxidant and antiproliferative activities of different parts of Carica papaya. J Nutr Food Sci 4:1043–1048Google Scholar
  65. Mandal P, Sinha Babu SP, Mandal NC (2005) Antimicrobial activity of saponins from Acacia auriculiformis. Fitoterapia 76:462–465CrossRefPubMedGoogle Scholar
  66. Martinovich GG, Martinovich IV, Vcherashniaya AV, Shadyro OI, Cherenkevich SN (2016) Thymoquinone a biologically active component of Nigella sativa, induces mitochondrial production of reactive oxygen species and programmed death of tumor cells. Biophy 61:963–970CrossRefGoogle Scholar
  67. Mason TL, Wasserman BP (1987) Inactivation of red beet betaglucan synthase by native oxidized phenolic compounds. Phytochemistry 26:2197–2202CrossRefGoogle Scholar
  68. Melzig MF, Bader G, Loose R (2001) Investigations of the mechanism of membrane activity of selected triterpenoid saponins. Planta Med 67:43–48CrossRefPubMedGoogle Scholar
  69. Merfort I, Wary V, Barakat H, Hussain A, Nawwar AM (1997) Flavonol triglycosides from seeds of Nigella sativa. Phytochemistry 46:359–363CrossRefGoogle Scholar
  70. Merkl R, Hrádková I, Filip ŠJ (2010) Antimicrobial and antioxidant properties of phenolic acids alkyl esters. Czech J Food Sci 28:275–279CrossRefGoogle Scholar
  71. Mitsch P, Zitterl-Eglseer K, Kohler B, Gabler C, Losa R, Zimpernik I (2004) The effect of two different blends of essential oil components on the proliferation of Clostridium perfringens in the intestines of broiler chickens. Poult Sci 83:669–675CrossRefPubMedGoogle Scholar
  72. Moreno S, Scheyer T, Romano CS, Vojnov AA (2006) Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Rad Res 40:223–231CrossRefGoogle Scholar
  73. Murphy MG (1990) Dietary fatty acids and membrane protein function. J Nutr Biochem 1:68–79CrossRefPubMedGoogle Scholar
  74. Nagi MN, Mansour MA (2000) Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity in rats: a possible mechanism of protection. Pharm Res 41:283CrossRefGoogle Scholar
  75. National Research Centre (1986) Pesticide resistance: strategies and tactics for management. National Academy Press, Washington, p 471Google Scholar
  76. Nideou D, Soedji K, Teteh A, Decuypere E, Gbeassor M, Tona K (2017) Effect of Carica Papaya seeds on gastro-intestinal parasites of pullet and production parameters. Int J Probiotics Prebiotics 12:89–96Google Scholar
  77. Obi RK, Nwanebu FC, Ndubuisi UU, Orji NM (2009) Antibacterial qualities and phytochemical screening of the oils of Cucurbita pepo and Brassica nigra. J Med Plants Res 3:429–432Google Scholar
  78. Ogbaje CI, Agbo EO, Ajanusi OJ (2012) Prevalence of Ascaridia galli, Heterakis gallinarum tapeworm infections in birds slaughtered in Makurdi Township. Int J Poult Sci 11:103–105CrossRefGoogle Scholar
  79. Okigbo RN, Anuagasi CL, Amadi JE (2009) Advances in selected medicinal and aromatic plants indigenous to Africa. J Med Plants Res 3:086–095Google Scholar
  80. Osbourn AE (1996) Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821–1831CrossRefPubMedCentralPubMedGoogle Scholar
  81. Paarakh MP (2010) Nigella sativa Linn. Indian J Nat Prod Resour 1:409–429Google Scholar
  82. Parikh H, Khanna A (2014) Pharmacognosy and phytochemical analysis of Brassica juncea seeds. Pharmacogn Res 6:47–54CrossRefGoogle Scholar
  83. Patra AK (2012) An overview of antimicrobial properties of different classes of phytochemicals. In: Patra AK (ed) Dietary phytochemicals and microbes. Springer, New York, pp 1–32CrossRefGoogle Scholar
  84. Pavarini DP, Pavarini SP, Niehues M, Lopes NP (2012) Exogenous influences on plant secondary metabolite levels. Anim Feed Sci Technol 176:5–16CrossRefGoogle Scholar
  85. Peter JK, Kumar Y, Pandey P, Masih H (2014) Antibacterial activity of seed and leaf extract of Carica Papaya var. Pusa dwarf Linn. IOSR J Pharm Biol Sci 9:29–37Google Scholar
  86. Peterson HL (1970) Evaluation of mustard meal as a source of supplemental protein. Dissertation, Montana State UniversityGoogle Scholar
  87. Polat U (2010) The effects on metabolism of glucosinolates and theirs hydrolysis products. J Biol Environ Sci 4:39–42Google Scholar
  88. Rakariyatham N, Sakorn P (2002) Biodegradation of glucosinolates in brown mustard seed meal (Brassica juncea) by Aspergillus sp. NR-4201 in liquid and solid-state cultures. Biodegradation 13:395–399CrossRefPubMedGoogle Scholar
  89. Ricke SC (2003) Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult Sci 82:632–639CrossRefPubMedGoogle Scholar
  90. Rockett BD, Franklin A, Harris M, Teague H, Rockett A, Shaikh SR (2011) Lipid raft organization is more sensitive to disruption by (n − 3) PUFA than nonrafts of EL4 and B cells. J Nutr 141:1041–1048CrossRefPubMedCentralPubMedGoogle Scholar
  91. Sahoo A, Soren NM (2012) Phytochemicals and gut microbial populations in non-ruminants. In: Patra AK (ed) Dietary phytochemicals and microbes. Springer, New York, pp 379–381Google Scholar
  92. Salihu MD, Junaidu AU, Magaji AA, Abubakar MB, Adamu AY, Yakubu AS (2009) Prevalence of Campylobacter in poultry meat in Sokoto, Northwestern Nigeria. J Public Health Epidemiol 1:041–045Google Scholar
  93. Sampedro J, Valdivia ER (2014) New antimicrobial agents of plant origin. In: Villa TG, Veiga-Crespo P (eds) Antimicrobial compounds. Springer, Berlin, pp 83–114CrossRefGoogle Scholar
  94. Sharma NK, Ahirwar D, Jhade D, Gupta S (2009) Medicinal and pharmacological potential of Nigella sativa: a review. Ethnobot Rev 13:946–955Google Scholar
  95. Shyma KP, Gupta JP, Ghosh S, Patel KK, Singh V (2014) Acaricidal effect of herbal extracts against cattle tick Rhipicephalus (Boophilus) microplus using in vitro studies. Parasitol Res 113:1919–1926CrossRefPubMedGoogle Scholar
  96. Simões M, Lemos M, Simões LC (2012) Phytochemicals against drug-resistant microbes. In: Patra AK (ed) Dietary phytochemicals and microbes. Springer, New York, pp 379–381Google Scholar
  97. Sinha Babu SP, Sarkar D, Ghosh NK, Saha A, Sukul NC, Bhattacharya S (1997) Enhancement of membrane damage by saponins isolated from Acacia auriculiformis. Jpn J Pharmacol 75:451–454CrossRefPubMedGoogle Scholar
  98. Sofrata A, Santangelo EM, Azeem M, Borg-Karlson AK, Gustafsson A, Putsep K (2011) Benzyl isothiocyanate, a major component from the roots of Salvadora persica is highly active against Gram-negative bacteria. PLoS ONE 6:23045CrossRefGoogle Scholar
  99. Sporsheim B, Øverby A, Bones AM (2015) Allyl isothiocyanate inhibits actin-dependent intracellular transport in Arabidopsis thaliana. Int J Mol Sci 16:29134–29147CrossRefPubMedCentralPubMedGoogle Scholar
  100. Stepek G, Lowe AE, Buttle DJ, Duce IR, Behnke JM (2007) The anthelminthic efficacy of plant-derived cysteine proteinases against the rodent gastrointestinal nematode, Heligmosomoides polygyrus in vivo. Parasitology 134:1409–1419CrossRefPubMedGoogle Scholar
  101. Stubbs CD, Smith AD (1984) The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophy Acta 779:89–137CrossRefGoogle Scholar
  102. Suarez M, Haenni M, Canarelli S, Fisch F, Chodanowski P, Servis C, Michielin O, Freitag R, Moreillon P, Mermod N (2005) Structure-function characterization and optimization of a plant-derived antibacterial peptide. Antimicrob Agents Chemother 49:3847–3857CrossRefPubMedCentralPubMedGoogle Scholar
  103. Tang CS, Bhothipaksa K, Frank HA (1972) Bacterial degradation of benzyl isothiocyanate. Appl Microbiol 23:1145–1148PubMedCentralPubMedGoogle Scholar
  104. Teirlynck E, Bjerrum L, Eeckhaut V, Huyghebaert G, Pasmans F, Haesebrouck F, Dewulf J, Ducatelle R, Van Immerseel F (2009) The cereal type in feed influences gut wall morphology and intestinal immune cell infiltration in broiler chickens. Br J Nutr 102:1453–1461CrossRefPubMedGoogle Scholar
  105. Tesaki S, Tanabe S, Ono H, Fukushi E, Kawabata J, Watanabe M (1998) 4-Hydroxy-3-nitrophenyllactic and sinapic acids as antibacterial compounds from mustard seeds. Biosci Biotechnol Biochem 62:998–1000CrossRefPubMedGoogle Scholar
  106. Tzounis X, Vulevic J, Kuhnle GG, George T, Leonczak J, Gibson GR, Kwik-Uribe C, Spencer JP (2008) Flavanol monomer-induced changes to the human fecal microflora. Br J Nutr 99:782–792CrossRefPubMedGoogle Scholar
  107. Vandeputte OM, Kiendrebeogo M, Rasamiravaka T, Stévigny C, Duez P, Rajaonson S, Diallo B, Mol A, Baucher M, El Jaziri M (2011) The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology 157:2120–2132CrossRefPubMedGoogle Scholar
  108. Windisch W (2009) Alternatives to antibiotic growth promoters—what options do we have? In: Trends in animal nutrition where are the boundaries? Delacon dossier, no. 3, pp 1–36Google Scholar
  109. Windisch W, Schedle K, Plitzner C, Kroismayr A (2008) Use of phytogenic products as feed additives for swine and poultry. J Anim Sci 86:140–148CrossRefGoogle Scholar
  110. Ya C, Gaffney SH, Lilley TH, Haslam E (1988) Carbohydratepolyphenol complexation. In: Hemingway RW, Karchesy JJ (eds) Chemistry and significance of condensed tannins. Plenum Press, New York, p 553Google Scholar
  111. Yamato Y, Gayor RB (2002) Therapeutic potential of inhibitory of the NF.KB pathway in the treatment of inflammation and cancer. J Clin Investig 1:493–503Google Scholar
  112. Yaqoob P (2009) The nutritional significance of lipid rafts. Annu Rev Nutr 29:257–282CrossRefPubMedGoogle Scholar
  113. Yessuf AM (2015) Phytochemical extraction and screening of bio active compounds from black cumin (Nigella Sativa) seeds extract. Am J Life Sci 3:358–364CrossRefGoogle Scholar
  114. Zhang Y (2000) Role of glutathione in the accumulation of anticarcinogenic isothiocyanates and their glutathione conjugates by murine hepatoma cells. Carcinogenesis 21:1175–1182CrossRefPubMedGoogle Scholar
  115. Zhang Y (2004) Cancer-preventive isothiocyanate: measurement of human exposure and mechanism of action. Mutat Res Fundam Mol Mech 555:173–190CrossRefGoogle Scholar
  116. Zhang Y, Lewis K (1997) Fabatins: new antimicrobial plant peptides. FEMS Microbiol Lett 149:59–64CrossRefPubMedGoogle Scholar
  117. Zhang Y, Chen J, Chen Y, Dong J, Wei Q, Lou J (2005) Environmental mycological study and allergic respiratory disease among tobacco processing workers. J Occup Health 47:181–187CrossRefPubMedGoogle Scholar
  118. Zhang J, Van L, Steven G, Ju J, Liu W, Dorrestein PC, Li W, Kelleher NL, Shen B (2008) A phosphopantetheinylating polyketide synthase producing a linear polyene to initiate enediyne antitumor antibiotic biosynthesis. Proc of Natl Acad Sci USA 105:1460–1465CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Moyosore J. Adegbeye
    • 1
  • Mona M. M. Y. Elghandour
    • 2
  • Tolulope O. Faniyi
    • 3
  • Nallely Rivero Perez
    • 4
  • Alberto Barbabosa-Pilego
    • 2
  • Adrian Zaragoza-Bastida
    • 4
  • Abdelfattah Z. M. Salem
    • 2
  1. 1.Department of Animal Science, College of AgricultureJoseph Ayo Babalola UniversityIkeji-Arakeji, IleshaNigeria
  2. 2.Facultad de Medicina Veterinaria y ZootecniaUniversidad Autónoma del Estado de MéxicoTolucaMexico
  3. 3.Department of Animal Science, Faculty of Agriculture and ForestryUniversity of IbadanIbadanNigeria
  4. 4.Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias AgropecuariaUniversidad Autónoma del Estado de HidalgoPachucaMexico

Personalised recommendations