Advertisement

Agroforestry Systems

, Volume 93, Issue 1, pp 213–227 | Cite as

Carbon stocks and tree diversity in scattered tree silvopastoral systems in Chiapas, Mexico

  • Deb R. AryalEmail author
  • Rogelio R. Gómez-González
  • Rodrigo Hernández-Nuriasmú
  • Danilo E. Morales-Ruiz
Article

Abstract

Carbon sequestration in livestock systems through silvopastoral practices can help reduce the net greenhouse gas emissions. In this study, we evaluated the above and belowground carbon storage potential of a silvopastoral system and compared to a conventional open pasture system in two sites of Chiapas, Mexico. We established a total of 20 carbon monitoring plots, 10 plots for each system. All the trees of ≥ 2.5 cm DBH were measured within the plots of 1000 m2. Allometric equations were used to calculate biomass carbon stocks. Grass biomass, ground litter, and soil samples were collected from four random locations within the plot. We also calculated tree diversity and other ecological indices of the silvopastoral systems. The aboveground biomass carbon stocks in dispersed tree silvopastoral systems varied between 11.53 ± 1.80 to 14.63 ± 5.50 Mg C ha−1. Soil organic carbon concentrations were higher in silvopastoral systems while soil bulk density was higher in open pasture systems, both affecting the soil organic carbon storage. A total of 29 tree species were registered in the dispersed tree silvopastoral systems. The Sorenson’s similarity index showed that the two study sites significantly differed in terms of their tree community compositions. Such differences were also observed in soil properties and carbon storage. We showed that there was a positive correlation between aboveground biomass and soil organic carbon concentrations. Further research is required to better understand the contributions of fine root and litter turnover on soil organic carbon storage in these systems.

Keywords

Carbon pools Tropical livestock systems Dispersed tree silvopasture Soil organic carbon Greenhouse gas mitigacion Tree diversity Southern Mexico 

Notes

Acknowledgements

The authors thank Consejo Nacional de Ciencia y Tecnología (CONACYT) for financing the project 381–2015 “Estrategias de mitigación de impactos ambientales del sector agropecuario en Chiapas”. We thank René Pinto, Roldan Ruiz and Alejandro Orantes for their collaboration in field and laboratory works. We acknowledge the landowners of Villaflores and Suchiapa who allowed us to conduct this study on their ranches. The authors thank two anonymous reviewers for their valuable comments and suggestions which greatly improved the document.

References

  1. Abdalla M, Hastings A, Chadwick DR et al (2018) Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agric Ecosyst Environ 253:62–81.  https://doi.org/10.1016/j.agee.2017.10.023 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alkama R, Cescatti A (2016) Biophysical climate impacts of recent changes in global forest cover. Science 351:600–604.  https://doi.org/10.1126/science.aac8083 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alkemade R, Reid RS, van den Berg M et al (2013) Assessing the impacts of livestock production on biodiversity in rangeland ecosystems. Proc Natl Acad Sci 110:20900–20905PubMedCrossRefPubMedCentralGoogle Scholar
  4. Andrade HJ, Brook R, Ibrahim M (2008) Growth, production and carbon sequestration of silvopastoral systems with native timber species in the dry lowlands of Costa Rica. Plant Soil 308:11–22CrossRefGoogle Scholar
  5. Aryal DR, De Jong BH, Ochoa-Gaona S et al (2014) Carbon stocks and changes in tropical secondary forests of southern Mexico. Agric Ecosyst Environ 195:220–230CrossRefGoogle Scholar
  6. Aryal DR, De Jong BHJ, Mendoza-Vega J et al (2017a) Soil organic carbon stocks and soil respiration in tropical secondary forests in southern Mexico. In: Field DJ, Morgan C, McBratney A (eds) Global soil security. Springer, New York, pp 153–165CrossRefGoogle Scholar
  7. Aryal DR, Pinto-Ruiz R, Gómez-Castro H, et al (2017b) Pérdida de carbono orgánico de suelo por la conversión de vegetación natural a pastizales, Mexico. In: Estado actual del conocimiento del ciclo de carbono y sus interacciones en México: Síntesis a 2017. Programa Mexicano del Carbono en colaboración con el Centro de Investigación Científica y de Educación Superior de Ensenada y la Universidad Autónoma de Baja California, Texcoco, Mexico, pp 438–443Google Scholar
  8. Aryal DR, Gómez-Castro H, Del Carmen-García N et al (2018) Carbon storage potential in forest areas within a livestock system of Villaflores, Chiapas, Mexico. Rev Mex Cienc For 9:150–180Google Scholar
  9. Avila M (1992) Agroforestry systems—concepts and classification. Technical paper 3. In: The AFNETA alley farming training manual—volume 2: source book for alley farming research, 1st edn. International Institute of Tropical Agriculture, Ibadan, NigeriaGoogle Scholar
  10. Báez-Vargas AM, Esparza-Olguín L, Martínez-Romero E et al (2017) Effect of management on tree diversity in secondary vegetation in the Biosphere Reserve of Calakmul, Campeche, Mexico. Rev Biol Trop 65:41–53PubMedCrossRefPubMedCentralGoogle Scholar
  11. Barlow J, Lennox GD, Ferreira J et al (2016) Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535:144–147PubMedCrossRefPubMedCentralGoogle Scholar
  12. Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111:1–11CrossRefGoogle Scholar
  13. Cairns MA, Olmsted I, Granados J, Argaez J (2003) Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico’s Yucatan Peninsula. For Ecol Manag 186:125–132CrossRefGoogle Scholar
  14. Calle Z, Murgueitio E, Chará J et al (2013) A strategy for scaling-up intensive silvopastoral systems in Colombia. J Sustain For 32:677–693CrossRefGoogle Scholar
  15. Cao J, Gong Y, Yeh E et al (2017) Impact of grassland contract policy on soil organic carbon losses from alpine grassland on the Qinghai-Tibetan Plateau. Soil Use Manag 33:663–671CrossRefGoogle Scholar
  16. Cárdenas A, Moliner A, Hontoria C, Ibrahim M (2018) Ecological structure and carbon storage in traditional silvopastoral systems in Nicaragua. Agrofor Syst.  https://doi.org/10.1007/s10457-018-0234-6 CrossRefGoogle Scholar
  17. Cardinael R, Chevallier T, Barthès BG et al (2015) Impact of alley cropping agroforestry on stocks, forms and spatial distribution of soil organic carbon—a case study in a Mediterranean context. Geoderma 259:288–299CrossRefGoogle Scholar
  18. Cardinael R, Chevallier T, Cambou A et al (2017) Increased soil organic carbon stocks under agroforestry: a survey of six different sites in France. Agric Ecosyst Environ 236:243–255CrossRefGoogle Scholar
  19. Casals P, Romero J, Rusch GM, Ibrahim M (2014) Soil organic C and nutrient contents under trees with different functional characteristics in seasonally dry tropical silvopastures. Plant Soil 374:643–659.  https://doi.org/10.1007/s11104-013-1884-9 CrossRefGoogle Scholar
  20. Casanova-Lugo F, Ramírez-Avilés L, Parsons D et al (2016) Environmental services from tropical agroforestry systems. Rev Chapingo Ser Cienc For Ambiente 22:269–284Google Scholar
  21. Casanova-Lugo F, Petit-Aldana J, Solorio-Sánchez F et al (2018) Carbon stocks in biomass and soils of woody species fodder banks in the dry tropics of Mexico. Soil Use Manag.  https://doi.org/10.1111/sum.12456 CrossRefGoogle Scholar
  22. Cayuela L, Golicher DJ, Benayas J et al (2006) Fragmentation, disturbance and tree diversity conservation in tropical montane forests. J Appl Ecol 43:1172–1181CrossRefGoogle Scholar
  23. Chacón-León M, Harvey CA (2013) Reservas de biomasa de árboles dispersos en potreros y mitigación al cambio climático. Agron Mesoam 24:17–26CrossRefGoogle Scholar
  24. Chao K-J, Chen Y-S, Song G-ZM et al (2017) Carbon concentration declines with decay class in tropical forest woody debris. For Ecol Manag 391:75–85CrossRefGoogle Scholar
  25. Cubillos AM, Vallejo VE, Arbeli Z et al (2016) Effect of the conversion of conventional pasture to intensive silvopastoral systems on edaphic bacterial and ammonia oxidizer communities in Colombia. Eur J Soil Biol 72:42–50CrossRefGoogle Scholar
  26. Dagang ABK, Nair PKR (2003) Silvopastoral research and adoption in Central America: recent findings and recommendations for future directions. Agrofor Syst 59:149–155.  https://doi.org/10.1023/A:1026394019808 CrossRefGoogle Scholar
  27. De Jong B, Anaya C, Masera O et al (2010) Greenhouse gas emissions between 1993 and 2002 from land-use change and forestry in Mexico. For Ecol Manag 260:1689–1701CrossRefGoogle Scholar
  28. Dube F, Thevathasan NV, Zagal E et al (2011) Carbon sequestration potential of silvopastoral and other land use systems in the chilean patagonia. In: Kumar BM, Nair PKR (eds) Carbon sequestration potential of agroforestry systems: opportunities and challenges. Springer, Dordrecht, pp 101–127CrossRefGoogle Scholar
  29. Ehret M, Graß R, Wachendorf M (2015) The effect of shade and shade material on white clover/perennial ryegrass mixtures for temperate agroforestry systems. Agrofor Syst 89:557–570CrossRefGoogle Scholar
  30. Erb K-H, Kastner T, Luyssaert S et al (2013) Bias in the attribution of forest carbon sinks. Nat Clim Change 3:854CrossRefGoogle Scholar
  31. FAO (2017) FAOSTAT: food and agriculture data. In: Food Agric. Organ. UN. http://www.fao.org/faostat/en/#home. Accessed 8 Feb 2017
  32. Franzluebbers A, Stuedemann J, Schomberg H, Wilkinson S (2000) Soil organic C and N pools under long-term pasture management in the Southern Piedmont USA. Soil Biol Biochem 32:469–478CrossRefGoogle Scholar
  33. Gaitán L, Läderach P, Graefe S et al (2016) Climate-smart livestock systems: an assessment of carbon stocks and GHG emissions in nicaragua. PLoS ONE 11:1–12.  https://doi.org/10.1371/journal.pone.0167949 CrossRefGoogle Scholar
  34. García-Oliva F, Casar I, Morales P, Maass JM (1994) Forest-to-pasture conversion influences on soil organic carbon dynamics in a tropical deciduous forest. Oecologia 99:392–396PubMedCrossRefPubMedCentralGoogle Scholar
  35. Giardina F, Konings AG, Kennedy D et al (2018) Tall Amazonian forests are less sensitive to precipitation variability. Nat Geosci 25:1–7.  https://doi.org/10.1038/s41561-018-0133-5 CrossRefGoogle Scholar
  36. Grande D, de Leon F, Nahed J, Pérez-Gil F (2010) Importance and function of scattered trees in pastures in the Sierra Region of Tabasco, Mexico. Res J Biol Sci 5:75–87CrossRefGoogle Scholar
  37. Haile SG, Nair PK, Nair VD (2008) Carbon storage of different soil-size fractions in Florida silvopastoral systems. J Environ Qual 37:1789–1797PubMedCrossRefGoogle Scholar
  38. Hansen MC, Potapov PV, Moore R et al (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853PubMedCrossRefGoogle Scholar
  39. Havlík P, Valin H, Herrero M et al (2014) Climate change mitigation through livestock system transitions. Proc Natl Acad Sci 111:3709–3714PubMedCrossRefGoogle Scholar
  40. Herrero M, Havlík P, Valin H et al (2013) Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc Natl Acad Sci 110:20888–20893PubMedCrossRefGoogle Scholar
  41. Hoosbeek MR, Remme RP, Rusch GM (2018) Trees enhance soil carbon sequestration and nutrient cycling in a silvopastoral system in south-western Nicaragua. Agrofor Syst 92:263–273.  https://doi.org/10.1007/s10457-016-0049-2 CrossRefGoogle Scholar
  42. Houghton R (2012) Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Clim Syst 4:597–603.  https://doi.org/10.1016/j.cosust.2012.06.006 CrossRefGoogle Scholar
  43. Howlett DS, Mosquera-Losada MR, Nair P et al (2011) Soil carbon storage in silvopastoral systems and a treeless pasture in northwestern Spain. J Environ Qual 40:825–832PubMedCrossRefPubMedCentralGoogle Scholar
  44. Ibrahim M, Chacón M, Cuartas C et al (2006) Almacenamiento de carbono en el suelo y la biomasa arbórea en sistemas de usos de la tierra en paisajes ganaderos de Colombia, Costa Rica y Nicaragua. Agroforestería en las Americas 45:27–36Google Scholar
  45. Jones DA, O’Hara KL (2016) The influence of preparation method on measured carbon fractions in tree tissues. Tree Physiol 36:1177–1189PubMedCrossRefPubMedCentralGoogle Scholar
  46. Jose S, Bardhan S (2012) Agroforestry for biomass production and carbon sequestration: an overview. Agrofor Syst 86:105–111CrossRefGoogle Scholar
  47. Kolb M, Galicia L (2018) Scenarios and story lines: drivers of land use change in southern Mexico. Environ Dev Sustain 20:681–702CrossRefGoogle Scholar
  48. Laganiere J, Angers DA, Pare D (2010) Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Change Biol 16:439–453CrossRefGoogle Scholar
  49. Lal R, Negassa W, Lorenz K (2015) Carbon sequestration in soil. Curr Opin Environ Sustain 15:79–86CrossRefGoogle Scholar
  50. Lawler JJ, Lewis DJ, Nelson E et al (2014) Projected land-use change impacts on ecosystem services in the United States. Proc Natl Acad Sci 111:7492–7497PubMedCrossRefPubMedCentralGoogle Scholar
  51. Le Quéré C, Raupach MR, Canadell JG et al (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836CrossRefGoogle Scholar
  52. Lee J, Hopmans JW, Rolston DE et al (2009) Determining soil carbon stock changes: simple bulk density corrections fail. Agric Ecosyst Environ 134:251–256CrossRefGoogle Scholar
  53. López-Santiago JG, Casanova-Lugo F, Villanueva-López G et al (2018) Carbon storage in a silvopastoral system compared to that in a deciduous dry forest in Michoacán, Mexico. Agrofor Syst.  https://doi.org/10.1007/s10457-018-0259-x CrossRefGoogle Scholar
  54. Lorenz K, Lal R (2014) Soil organic carbon sequestration in agroforestry systems. A review. Agron Sustain Dev 34:443–454CrossRefGoogle Scholar
  55. Martens DA, Reedy TE, Lewis DT (2003) Soil organic carbon content and composition of 130-year crop, pasture and forest land-use managements. Glob Change Biol 10:65–78.  https://doi.org/10.1046/j.1529-8817.2003.00722.x CrossRefGoogle Scholar
  56. McGroddy ME, Lerner AM, Burbano DV et al (2015) Carbon stocks in silvopastoral systems: a study from four communities in southeastern Ecuador. Biotropica 47:407–415CrossRefGoogle Scholar
  57. Mokany K, Raison R, Prokushkin AS (2006) Critical analysis of root: shoot ratios in terrestrial biomes. Glob Change Biol 12:84–96CrossRefGoogle Scholar
  58. Montagnini F, Ibrahim M, Murgueitio E (2013) Silvopastoral systems and climate change mitigation in Latin America. Bois For Trop 316:3–16CrossRefGoogle Scholar
  59. Murgueitio E, Calle Z, Uribe F et al (2011) Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For Ecol Manag 261:1654–1663CrossRefGoogle Scholar
  60. Murgueitio E, Barahona R, Chará J et al (2015) The intensive silvopastoral systems in Latin America sustainable alternative to face climatic change in animal husbandry. Rev Cuba Cienc Agríc 49:541–554Google Scholar
  61. Nahed-Toral J, Valdivieso-Pérez A, Aguilar-Jiménez R et al (2013) Silvopastoral systems with traditional management in southeastern Mexico: a prototype of livestock agroforestry for cleaner production. J Clean Prod 57:266–279CrossRefGoogle Scholar
  62. Nair PR (1985) Classification of agroforestry systems. Agrofor Syst 3:97–128CrossRefGoogle Scholar
  63. Nair PKR (2012) Carbon sequestration studies in agroforestry systems: a reality-check. Agrofor Syst 86:243–253.  https://doi.org/10.1007/s10457-011-9434-z CrossRefGoogle Scholar
  64. Nair RPK, Mohan Kumar B, Nair Vimala D (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23.  https://doi.org/10.1002/jpln.200800030 CrossRefGoogle Scholar
  65. Navarrete D, Sitch S, Aragão LE, Pedroni L (2016) Conversion from forests to pastures in the Colombian Amazon leads to contrasting soil carbon dynamics depending on land management practices. Glob Change Biol 22:3503–3517CrossRefGoogle Scholar
  66. Newbold T, Hudson LN, Hill SL et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50PubMedCrossRefPubMedCentralGoogle Scholar
  67. Oelbermann M, Voroney RP, Gordon AM (2004) Carbon sequestration in tropical and temperate agroforestry systems: a review with examples from Costa Rica and southern Canada. Agric Ecosyst Environ 104:359–377CrossRefGoogle Scholar
  68. Opio C, Gerber PJ, Mottet A, et al (2013) Greenhouse gas emissions from ruminant supply chains—a global life cycle assessment. Food and Agriculture Organization of the United Nations (FAO), RomeGoogle Scholar
  69. Orihuela-Belmonte DE, De Jong BHJ, Mendoza-Vega J et al (2013) Carbon stocks and accumulation rates in tropical secondary forests at the scale of community, landscape and forest type. Agric Ecosyst Environ 171:72–84CrossRefGoogle Scholar
  70. Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993PubMedCrossRefPubMedCentralGoogle Scholar
  71. Perry ME, Schacht WH, Ruark GA, Brandle JR (2009) Tree canopy effect on grass and grass/legume mixtures in eastern Nebraska. Agrofor Syst 77:23–35CrossRefGoogle Scholar
  72. Phalan B, Onial M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333:1289–1291PubMedCrossRefPubMedCentralGoogle Scholar
  73. Pinheiro FM, Nair PR (2018) Silvopasture in the Caatinga biome of Brazil: a review of its ecology, management, and development opportunities. For Syst 27:1–16.  https://doi.org/10.5424/fs/2018271-12267 CrossRefGoogle Scholar
  74. Pompa-García M, Sigala-Rodríguez JA, Jurado E, Flores J (2017) Tissue carbon concentration of 175 Mexican forest species. IForest-Biogeosciences For 10:754–758CrossRefGoogle Scholar
  75. Ramírez-Marcial N, González-Espinosa M, Williams-Linera G (2001) Anthropogenic disturbance and tree diversity in montane rain forests in Chiapas, Mexico. For Ecol Manag 154:311–326CrossRefGoogle Scholar
  76. Reis GL, Lana ÂMQ, Maurício RM et al (2010) Influence of trees on soil nutrient pools in a silvopastoral system in the Brazilian Savannah. Plant Soil 329:185–193CrossRefGoogle Scholar
  77. Roa-Fuentes LL, Martínez-Garza C, Etchevers J, Campo J (2015) Recovery of soil C and N in a tropical pasture: passive and active restoration. Land Degrad Dev 26:201–210CrossRefGoogle Scholar
  78. Rusch G, Zapata P, Casanoves F et al (2014) Determinants of grassland primary production in seasonally-dry silvopastoral systems in Central America. Agrofor Syst 88:517–526CrossRefGoogle Scholar
  79. Saldaña C, Alejandra R, López Aguilar R, et al (2015) Impacto ambiental y limitantes de la sustentabilidad de la actividad agrícola en la región Frailesca. In: Pasado, presente y futuro de las regiones en México y su estudio, 1st edn. Asociación Mexicana de Ciencias para el Desarrollo Regional, A. C., MéxicoGoogle Scholar
  80. Schmidt MW, Torn MS, Abiven S et al (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56PubMedPubMedCentralCrossRefGoogle Scholar
  81. SIAP-SAGARPA (2016) Producción Ganadera. In: Serv. Inf. Agroaliment. Pesq. http://www.gob.mx/siap/acciones-y-programas/produccion-pecuaria
  82. Soto-Pinto L, Anzueto M, Mendoza J et al (2010) Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agrofor Syst 78:39–51CrossRefGoogle Scholar
  83. Steinfeld H, Gerber P, Wassenaar TD, et al (2006) Livestock’s long shadow: environmental issues and options. Food and Agriculture Organization of the United Nations (FAO), RomeGoogle Scholar
  84. Throop H, Archer S, Monger HC, Waltman S (2012) When bulk density methods matter: implications for estimating soil organic carbon pools in rocky soils. J Arid Environ 77:66–71CrossRefGoogle Scholar
  85. Titeux N, Henle K, Mihoub J et al (2016) Biodiversity scenarios neglect future land-use changes. Glob Change Biol 22:2505–2515CrossRefGoogle Scholar
  86. Torralba M, Fagerholm N, Burgess PJ et al (2016) Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agric Ecosyst Environ 230:150–161CrossRefGoogle Scholar
  87. Torres-Rivera JA, Espinoza-Domínguez W, Reddiar-Krishnamurthy L, Vázquez-Alarcón A (2011) Secuestro de carbono en potreros arbolados, potreros sin árboles y bosque caducifolio de Huatusco, Veracruz. Trop Subtrop Agroecosystems 13:543–549Google Scholar
  88. Vargas R, Allen MF, Allen EB (2008) Biomass and carbon accumulation in a fire chronosequence of a seasonally dry tropical forest. Glob Change Biol 14:109–124Google Scholar
  89. Velázquez A, Mas JF, Gallegos JRD et al (2002) Patrones y tasas de cambio de uso del suelo en México. Gac Ecológica 62:21–37Google Scholar
  90. Villanueva-López G, Martínez-Zurimendi P, Casanova-Lugo F et al (2015) Carbon storage in livestock systems with and without live fences of Gliricidia sepium in the humid tropics of Mexico. Agrofor Syst 89:1083–1096CrossRefGoogle Scholar
  91. Villanueva-López G, Martínez-Zurimendi P, Ramírez-Avilés L et al (2016) Live fences reduce the diurnal and seasonal fluctuations of soil CO2 emissions in livestock systems. Agron Sustain Dev 36:1–8CrossRefGoogle Scholar
  92. Villanueva-Partida C, Casanova-Lugo F, Villanueva-López G et al (2016) Influence of the density of scattered trees in pastures on the structure and species composition of tree and grass cover in southern Tabasco, Mexico. Agric Ecosyst Environ 232:1–8CrossRefGoogle Scholar
  93. Villanueva-Partida CR, Casanova-Lugo F, González-Valdivia NA et al (2017) Traditional uses of dispersed trees in the pastures of the mountainous region of Tabasco, Mexico. Agrofor Syst.  https://doi.org/10.1007/s10457-017-0125-2 CrossRefGoogle Scholar
  94. Wedderburn M, Carter J (1999) Litter decomposition by four functional tree types for use in silvopastoral systems. Soil Biol Biochem 31:455–461CrossRefGoogle Scholar
  95. Wendt J, Hauser S (2013) An equivalent soil mass procedure for monitoring soil organic carbon in multiple soil layers. Eur J Soil Sci 64:58–65CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.CONACYT-UNACH, Facultad de Ciencias Agronómicas, Universidad Autónoma de ChiapasVillafloresMexico
  2. 2.Facultad de Ciencias AgronómicasUniversidad Autónoma de ChiapasVillafloresMexico

Personalised recommendations