Agroforestry Systems

, Volume 93, Issue 5, pp 2009–2025 | Cite as

Structure of cocoa farming systems in West and Central Africa: a review

  • Denis J. SonwaEmail author
  • Stephan F. Weise
  • Goetz Schroth
  • Marc J. J. Janssens
  • Howard-Yana Shapiro


Cocoa agroforests are growing in importance with a view to meeting farmers’ livelihood goals as well as ecological services. Following the recognition of cocoa agroforests as being useful for biodiversity conservation and farmers’ livelihoods, there is a growing discourse on the fact that they may also be useful in climate change mitigation and biodiversity conservation. Several companies have expressed their willingness to be “deforestation” certified within the next two decades. In West and Central Africa, cocoa is part of the endeavour to contribute to the REDD+ mechanism. Besides producing cocoa beans, the additional expectations from cocoa agroforests (timber, NWFP, biodiversity conservation, carbon storage, etc…) depend on the trees associated with the cocoa plants. The manner in which associated trees are mixed in the system impacts on the cocoa plants and plants associated with cocoa trees within the agroforestry system thus impact on the products and services produced by these farming systems. Studies are being undertaken to identify the exact composition of these associated trees but very few deal with the manner in which these trees are structurally distributed—vertically and horizontally—within the cocoa agroforest. Understanding the way in which cocoa and non-cocoa trees are distributed within the system would be useful with a view to improving the farm system, thus meeting the needs of several stakeholders. The present study reviews the structure of cocoa orchards and agroforests in West and Central Africa (Cameroon, Nigeria, Ghana and Cote d’Ivoire) with a view to improving the products and services of cocoa landscapes. This review is centred around: (i) density of cocoa, (ii) density of associated plants, (iii) basal area or associated plants, (iv) stratification and space between components, and (v) the life cycle of cocoa plantation components.

Densities of cocoa and associated plants in the field are not always those advised by extension services. The cocoa varieties play an important role in type and intensity of shade of the cocoa farms. In the context of multiple expectations placed on cocoa plantations, the unproductive cocoa trees in the farmer fields can be substituted by more vigorous ones or replaced by useful associated plants (Timber and NWFP). With the growing desire to reproduce some key attributes of local forests while responding to other economic and social needs associated with cocoa farms, the neighbouring/previous forest climax and its related basal area can be considered as a reasonable aim, when managing the cocoa agroforest. The life cycle of each of the plant components needs to be optimized in these spatial–temporal intensification considerations. In the prospect of vertical intensification, there is a need to give more attention to understorey management and the number of strata of the agroforest. In the context of sustainable management, a well-structured cocoa agroforest system needs to take landscape, local, national and global socio-economic and political issues into consideration.


Structure of cocoa agroforest Forest biodiversity Cocoa landscape Non-cocoa associated plants Ecological services 



This paper was written with the support of the International Institute of Tropical Agriculture (IITA), the Sustainable Tree Crops Program (STCP, a public private partnership program between USAID, IITA and Chocolate industries) and Mars Inc. We thank Susan Hoefs for her comments on earlier versions of the document. The research undertaken was part of the CGIAR research program on Forests, Trees, and Agroforestry (FTA).


  1. Akeyssey (1992) Le guide de l’Agriculture en Côte d’Ivoire. Vol 1: la Nature, les Hommes, les structures. Prat/Europa, ParisGoogle Scholar
  2. Amoah FM, Muertey BN, Baidoo-Addo K, Oppong FK, Osein Bonsu K, Asamoah TEO (1995) Underplanting oil palm with cocoa in Ghana. Agrofor Syst 30:289–299CrossRefGoogle Scholar
  3. Andres C, Comoé H, Beerli A, Schneider M, Rist S, Jacobi J (2016) Cocoa in monoculture and dynamic agroforestry. In: Lichtfouse E (ed) Sustainable agriculture reviews, vol 19. Springer International Publishing, Cham, pp 121–153CrossRefGoogle Scholar
  4. Andres C, Blaser WJ, Dzahini-Obiatey HK, Ameyaw GA, Domfeh OK, Awiagah MA, Six J (2018) Agroforestry systems can mitigate the severity of cocoa swollen shoot virus disease. Agric Ecosyst Environ 252:83–92. CrossRefGoogle Scholar
  5. Anim-Kwapong GJ (2003) Potential of some Neotropical Albizia species as shade trees when replanting cacao in Ghana. Agrofor Syst 58(3):185–193CrossRefGoogle Scholar
  6. Armengot L, Barbieri P, Andres C, Milz J, Schneider M (2016) Cacao agroforestry systems have higher return on labor compared to full-sun monocultures. Agron Sustain Dev 36:70. CrossRefGoogle Scholar
  7. Asare R (2005) Cocoa agroforests in West Africa: a look at activities on preferred trees in the farming systems. Forest & Landscape Working Papers no. 6-2005Google Scholar
  8. Asare R, Ræbild A (2016) Tree diversity and canopy cover in cocoa systems in Ghana. New For 47:287–302. CrossRefGoogle Scholar
  9. ASB (2000) Alternatives to slash-and-burn: summary report and synthesis of phase II in Cameroon. ASB Coordination Office, ICRAF-NairobiGoogle Scholar
  10. Aulong S, Duray S, Temple L (2000) Dynamique et structure floristique des agroforets à agrumes au centre du Cameroun. Fruits Paris 55(2):103–114Google Scholar
  11. Bauhus J, Puettmann K, Messier C (2009) Silviculture for old-growth attributes. For Ecol Manag 258:525–537CrossRefGoogle Scholar
  12. Blaser WJ, Oppong J, Hart SP, Landolt J, Yeboah E, Six J (2018) Climate-smart sustainable agriculture in low-to-intermediate shade agroforests. Nat Sustain 1:234–239CrossRefGoogle Scholar
  13. Bobo KS, Waltert M, Sainge NM, Njokagbor J, Fermon H, Mühlenberg M (2006) From forest to farmland: species richness patterns of trees and understorey plants along a gradient of forest conversion in Southwestern Cameroon. Biodivers Conserv 15(13):4097–4117CrossRefGoogle Scholar
  14. Braudeau (1969) Le cacaoyer. Coll. Tech. Agr. Et Pro. TropGoogle Scholar
  15. Champaud J (1966) L’économie cacaoyère du Cameroun. Cahiers ORSTOM, série Sciences Humaines III(3):107–124Google Scholar
  16. Dawoe E, Asante W, Acheampong E, Bosu P (2016) Shade tree diversity and aboveground carbon stocks in Theobroma cacao agroforestry systems: Implications for REDD + implementation in a West African cacao landscape. Carbon Balance Manag 11(11):17. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Duguma B, Gockowski J, Bakala J (2001) Smallholder cacao (Theobroma cacao Linn.) cultivation in agroforestry systems of West and Central Africa: challenges and opportunities. Agrofor Syst 51:177–188CrossRefGoogle Scholar
  18. Fanaye AO, Adeyemi EA, Olaiya AO (2003) Spacing experiments in cocoa/kola/citrus intercrop. (poster). In: 14th International Cocoa Research Conference, 13–18 October 2003 Accra GhanaGoogle Scholar
  19. FAO (2002) Etude de cas d’aménagement forestier exemplaire en Afrique centrale: les systèmes agroforestiers cacaoyers, Cameroun. Par Denis J. Sonwa, octobre 2002. Document de travail FM/12F. Service de la mise en valeur des ressources forestières, Division des ressources forestières. FAO, Rome (non publié). Accessed 29 Oct 2018
  20. Gockowski JJ, Dury S (1999) The economics of cocoa-fruit agroforests in Southern Cameroon. In: Jiménez F, Beer J (eds) Multi-strata agroforestry systems with perennial crops. CATIE, Turrialba, pp 239–241Google Scholar
  21. Gockowski J, Weise SF (1999) Revitalizing traditional tree crop systems at the forest margins in Cameroon. American Society of Agronomy meeting- Special Session of Alternatives to Slash-and-Burn Agriculture. Salt Lake City, Poster with abstract publishedGoogle Scholar
  22. Gockowski J, Weise SF, Sonwa DJ, Tchtat M, Ngobo M (2004) Conservation because it pays: shaded cocoa agroforests in West Africa. IITA-HFC, YaoundéGoogle Scholar
  23. Graefe S, Meyer-Sand LF, Chauvette K, Abdulai I, Jassogne L, Vaast P, Asare R (2017) Evaluating farmers’ knowledge of shade trees in different cocoa agro-ecological zones in Ghana. Hum Ecol 45:321–332. CrossRefGoogle Scholar
  24. Grimaldi J (1979) Petit guide du vulgarisateur agricole en culture cacaoyère. Fiches techniques cacao. Yaoundé, Cameroun, SodecaoGoogle Scholar
  25. Gustafsson L, Baker SC, Bauhus J, Beese WJ, Brodie A, Kouki J, Lindenmayer DB, Lõhmus A, Pastur GM, Messier C, Neyland M, Palik B, Sverdrup-Thygeson A, Volney WJA, Wayne A, Franklin JF (2012) Retention forestry to maintain multifunctional forests: a world perspective. Bioscience 62(7):633–645. CrossRefGoogle Scholar
  26. Harvey CA, Gonzalez J, Somarriba E (2006) Dung beetle and mammal diversity in forests, indigenous agroforestry systems and plantain monocultures in Talamanca, Costa Rica. Biodivers Conserv 15:555–585. CrossRefGoogle Scholar
  27. Janssens M, Deng Z, Sonwa D, Torrico JC, Mulindabigwi V, Pohlan J (2004) Relating productivity of farming systems to that of their surrounding eco-climax vegetation. University of Bonn, BonnGoogle Scholar
  28. Jiménez F, Beer J (1999) Multistrata agroforestry systems with perennial crops. In: Proceedings of the International Symposium on Multi-strata Agroforestry Systems with Perennial Crops, 22–27 Feb. Turrialba, Costa RicaGoogle Scholar
  29. Kengue J, Degrande A (2003) African plum, dacryodesedulis. Compilation of technical notes. ICUC, IRAD, ICRAF, NairobiGoogle Scholar
  30. Koko LK, Snoeck D, Lekadou TT, Assiri AA (2013) Cacao-fruit tree intercropping effects on cocoa yield, plant vigour and light interception in Côte d’Ivoire. Agrofor Syst 87(5):1–10CrossRefGoogle Scholar
  31. Koning N, Jongeneel R (2006) Food sovereignty and export crops. Could ECOWAS create an OPEC for sustainable cocoa? Forum Régional sur la Souveraineté Alimentaire. Niamey, 7–10 Novembre 2006Google Scholar
  32. Koyo JP (1982) Intercropping of Terminaliasuperba with cocoa and banana in mayombé, People’s Republic of the Congo. In: Agro-forestry in the African Humid Tropics. UNUGoogle Scholar
  33. Lachenaud P (2001) Le dilemme de la densité des cacaoyers en cacao culture, ou la nécessité des éclaircies. Communication présentée à la conférence internationale sur « L’avenir des cultures pérennes » , organisée par le BNETD, le CIRAD et l’Université Libre d’Amsterdam, Yamoussoukro, Nov 2001Google Scholar
  34. Leakey RRB, Tchoundjeu Z (2001) Diversification of tree crops: domestication of companion crops for poverty reduction and environmental services. Exp Agric 37:274–296CrossRefGoogle Scholar
  35. Leplaideur A (1985) Les systèmes agricoles en zone forestière, les paysans du Centre et du Sud Cameroun. IRAT, Yaoundé, Cameroun, 615 ppGoogle Scholar
  36. Lojka B, Pawera L, Kalousová M, Bortl L, Verner V, Houška J, Vanhove W, Van Damme P (2017) Multistrata systems: potentials and challenges of cocoa-based agroforests in the humid tropics. In: Dagar JC, Tewari VP (eds) Agroforestry. Springer, Singapore, pp 587–628CrossRefGoogle Scholar
  37. McElhinny C, Gibbons P, Brack C, Bauhus J (2005) Forest and woodland stand structural complexity: its definition and measurement. For Ecol Manag 218:1–24CrossRefGoogle Scholar
  38. Memento de l’Agronome. CIRAD, GRET et al (2004) Mémento de l’Agronome. CIRAD, ParisGoogle Scholar
  39. Mercer DE, Miller RP (1998) Socioeconomic research in agroforestry: progress, prospects, priorities. Agrofor Syst 38(177–193):1998Google Scholar
  40. Mortimer R, Saj S, David C (2017) Supporting and regulating ecosystem services in cacao agroforestry systems. Agrofor Syst. CrossRefGoogle Scholar
  41. Moses DD, Enríquez GA (1979) Calibrating varieties for yield of cocoa, as well as the relationships of several cacao features with the environment. In: Proc. 7th. Cocoa Res. Conf. 1979. Douala, Camerún, pp 51–55Google Scholar
  42. Mossu G (1990) Le cacaoyer. Collection Le technicien d’agriculture tropicale ACCT/CTA/Maisonneuve et LaroseGoogle Scholar
  43. N’Goran K (2003) Reflections on a durable cacao production system: the situation in the Ivory Coast, Africa. Paper from workshop held in Panama, 3/30-4/2, 1998. Smithsonian institution. Washington, DCGoogle Scholar
  44. Neisten ET, Rice RE, Ratay SM, Paratore K (2004) Commodities and conservation: the need for greater habitat protection in the tropics. Conservation International, Washington, DCGoogle Scholar
  45. Nissen T, Midmore D (2002) Stand basal area as an index of competitiveness in timber intercropping. Agrofor Syst 54(1):51–60CrossRefGoogle Scholar
  46. Nya-Ngatchou J (1984) Priorités de la recherche cacaoyère dans le cadre de la délégation générale à la recherche scientifique et technique du Cameroun. In: The Proceedings of the 9th International Cocoa Research Conference. Lomé, Togo, 12–18 February 1984, pp 3–6Google Scholar
  47. Osei-Bonsu K, Anim-Kwapong GJ (1997) Preliminary evaluation of some forest trees for cocoa cultivation. In: Proceedings of the 20th Biennial Conference by Ghana Science Association, UST, Kumasi, Ghana, 4–8 August 1997Google Scholar
  48. Osei-Bonsu K, Opoku-Ameyaw K, Amoah FM, Oppong FK (2002) Cacao-coconut intercropping in Ghana: agronomic and economic perspectives. Agrofor Syst 55(1):1–8CrossRefGoogle Scholar
  49. Padi B, Owusu GK (2003) Towards an integrated pest management for sustainable cocoa production in Ghana. Paper from workshop held in Panama, 3/30-4/2, 1998. Smithsonian institution. Washington, DCGoogle Scholar
  50. Petihuguenin P (1995) Cacaoculture et évolution du milieu, une contribution à la réflexion sur la reproductibilité de ces écosystèmes de culture. In: Pichot JP, Sibellet N, Lacoeuilhe JJ (eds) Fertilité du Milieu et stratégies paysannes sous les tropiques humides. CIRAD, Montpellier, pp 340–349Google Scholar
  51. Rice R, Greenberg R (2000) Cacao cultivation and the conservation of biological diversity. Ambio 29(3):167–173CrossRefGoogle Scholar
  52. Ruf FO (2011) The myth of complex cocoa agroforests: the case of Ghana. Hum Ecol 39:373–388. CrossRefGoogle Scholar
  53. Ruf F, Zadi H (2003) Cocoa: From deforestation to reforestation. Paper from workshop held in Panama, 3/30-4/2, 1998. Smithsonian institution. Washington, DCGoogle Scholar
  54. Russell D, Franzel S (2004) Trees of prosperity: agroforestry, markets and the African smallholder. Agrofor Syst 61:345–355Google Scholar
  55. Saj S, Jagoret P, Etoa LE, Eteckji Fonkeng E, Tarla JN, Essobo Nieboukaho J-D, Mvondo Sakouma K (2017) Lessons learned from the long-term analysis of cacao yield and stand structure in central Cameroonian agroforestry systems. Agric Syst 156:95–104. CrossRefGoogle Scholar
  56. Schroth G, da Fonseca GAB, Harvey CA, Vasconcelos HL, Izac AM (2004) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington DCGoogle Scholar
  57. Shapiro HY, Rosenquist EM (2004) Public/private partnerships in agroforestry: the example of working together to improve cocoa sustainability. Agrofor Syst 61:453–462Google Scholar
  58. Smith DM, Larson BC, Kelty MJ, Ashton PMS (1997) The practice of silviculture: applied forest ecology, 9th edn. Wiley, New York, p 537Google Scholar
  59. Sonwa DJ (2004) Biomass management and diversification within cocoa agroforest in the humid forest zone of southern Cameroon. PhD thesis. Faculty of Agriculture. University of Bonn. Germany. Cuvillier Verlag GoettingenGoogle Scholar
  60. Sonwa F, Weise SF, Tchatat M, Nkongmeneck BA, Adesina AA, Ndoye O, Gockowski J (2001) The role of cocoa agroforests in rural and community forestry in Southern Cameroon. Rural Development Forestry Network Paper, 25 g. Overseas Development Institute, London, pp 1–10. Accessed 29 Oct 2018
  61. Sonwa DJ, Okafor JC, Mpungi Buyungu P, Weise SF, Tchatat M, Adesina AA, Nkongmeneck AB, Ndoye O, Endamana D (2002) Dacryodesedulis, a neglected non-timber forest species for the agroforestry system of West and Central Africa. For Trees Livelihoods 12:41–45CrossRefGoogle Scholar
  62. Sonwa DJ, Weise SF, Tchatat M, Nkongmeneck BA, Adesina AA, Ndoye O, Gockowski J (2003a) Cacao agroforestry: integrating cacao production and forest resource conservation and management in southern Cameroon. In: won wa Musiti B (ed) 2nd Pan-African Symposium on the Sustainable Use of Natural Resources in Africa, Ouagadougou, Burkina Faso, 24–27 July 2000, 2003, pp 155–169. Accessed 29 Oct 2018
  63. Sonwa DJ, Weise SF, Ndoye O, Janssens MJJ (2003b) Local intensification and diversification initiatives within the cocoa agroforests of southern Cameroon: lessons for participatory forestry in perennial crop-based systems of Central and West Africa. Contribution to the Second international workshop on participatory forestry in Africa: Defining the way forward: sustainable livelihoods and sustainable forest management through participatory forestry 18–22 February 2002 Arusha, United Republic of Tanzania. FAO, pp. 407–413.
  64. Sonwa DJ, Weise SF, Ndoye O, Janssens MJJ (2003c) The promotion of cocoa agroforest in West and Central Africa. Voluntary paper presented during the XII world Forestry Congress on Forests, Source of Life. Quebec city September 21 to 28, 2003. Accessed 29 Oct 2018
  65. Sonwa DJ, Weise SF, Janssens MJJ (2003d) New synergies in the promotion of cocoa-based agroforestry systems in the humid forest zone of west and central Africa. ETFRN NEWS 39/40: Globalisation, localisation and tropical forest management. Accessed 29 Oct 2018
  66. Sonwa DJ, Nkongmeneck BA, Weise SF, Tchatat M, Adesina AA, Janssens MJJ (2007) Diversity of plants in cocoa agroforests in the humid forest zone of southern Cameroon. Biodivers Conserv 16(8):2385–2400CrossRefGoogle Scholar
  67. Sonwa DJ, Nkongmeneck AB, Weise SF, Tchatat M, Janssens MJJ (2010) Tree diversity of the cocoa agroforest around Yaoundé (southern Cameroon). In: van der Burgt X, van der Maesen J, Onana J-M (eds) Systematics and conservation of African Plants: Proceedings of the 18th AETFAT Congress. Kew Publishing, Royal Botanic Garden, pp 691–699Google Scholar
  68. Sonwa DJ, Weise SF, Schroth G, Janssens MJJ, Shapiro HY (2014) Plant diversity management in cocoa agroforestry systems in West and Central Africa—effects of markets and household needs. Agrofor Syst 88(6):1021–1034CrossRefGoogle Scholar
  69. Sonwa DJ, Weise SF, Nkongmeneck BA, Tchatat M, Janssens MJJ (2017) Structure and composition of cocoa agroforests in the humid forest zone of Southern Cameroon. Agrofor Syst 91:451–470. CrossRefGoogle Scholar
  70. Tchoume T (1982) Agro-forestry possibilities in oil palm plantations in the Ivory Coast. In: Agro-forestry in the African Humid Tropics. UNU. Accessed 29 Oct 2018
  71. Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E, Wanger TC (2011) Multifunctional shade-tree management in tropical agroforestry landscapes—a review. J Appl Ecol 48:619–629CrossRefGoogle Scholar
  72. Van Himme M, Snoeck J (2001) Cacaoyer. Theobroma cacao L. In: Raemaekers RH (ed) Agriculture en Afrique tropicale. DGCI, Bruxelles, pp 942–978Google Scholar
  73. Wessel M (1971) Fertilizer requirements of cacao (Theobroma cacao L.) in South-Western Nigeria. Amsterdan Royal Tropical Institute, no. 61Google Scholar
  74. Wessel M, Quist-Wessel PMF (2015) Cocoa production in West Africa, a review and analysis of recent developments. NJAS Wagening J Life Sci 74–75:1–7. CrossRefGoogle Scholar
  75. Wood GAR, Lass RA (1987) Cocoa. Tropical agriculture series, 4th edn. Longman Scientific and Technical, LondonGoogle Scholar
  76. Zapfack L, Engwald S, Sonké B, Achoundong G, Madong BA (2002) The impact of land use conversion on plant biodiversity in the forest zone of Cameroon. Biodivers Conserv 11(11):2047–2061CrossRefGoogle Scholar
  77. Zenner EK (2000) Do residual trees increase structural heterogeneity in Pacific Northwest coniferous forests? Ecol Appl 10(3):800–810CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Denis J. Sonwa
    • 1
    • 2
    Email author
  • Stephan F. Weise
    • 2
    • 3
  • Goetz Schroth
    • 4
  • Marc J. J. Janssens
    • 5
  • Howard-Yana Shapiro
    • 6
    • 7
    • 8
  1. 1.Center for International Forestry Research (CIFOR)Messa, YaoundéCameroon
  2. 2.Sustainable Tree Crops Program (STCP)International Institute of Tropical Agriculture (IITA)YaoundéCameroon
  3. 3.Bioversity InternationalRomeItaly
  4. 4.SantarémBrazil
  5. 5.Institute of Crop Science and Resource Conservation (INRES: InstitutfürNutzpflanzenwissenschaften und Ressourcenschutz), Unit of Tropical CropsUniversity of BonnBonnGermany
  6. 6.Mars IncorporatedMcLeanUSA
  7. 7.College of Agriculture and Environmental SciencesUniversity of CaliforniaDavisUSA
  8. 8.The World Agroforestry CentreNairobiKenya

Personalised recommendations