Advertisement

Agroforestry Systems

, Volume 93, Issue 1, pp 305–315 | Cite as

Bark stripping by cattle in silvopastoral systems

  • Maria Luiza Franceschi NicodemoEmail author
  • Vanderley Porfírio-da-Silva
Article

Abstract

Silvopastoral systems, consisting of the combined management of pastures, woody perennials and animals, are increasingly adopted throughout the world, especially in the tropics. However, reports of problems to the trees caused by the animals grazing these areas are also increasing. Damages inflicted by cattle to adult trees may include branch breakage, trunk breakage, leaves browsing and bark stripping. Bark stripping may cause severe damage to the trees: it can decrease the value of the timber, and the injuries may lead to diseases or even death of the tree. Bark stripping is caused by multiple factors. It can be related to (i) dietary deficiency (food quantity or quality; fiber, protein, energy, mineral deficiencies); (ii) social learning—from dam or herdmates; (iii) learning and post-ingestive feedback; (iv) stress and boredom, although the presence of trees gives cattle the opportunity to broaden the repertoire of natural behaviors; (v) pharmaceutical compounds used to control/treat diseases. In this article we review reports of bark stripping caused by livestock, specially cattle and sheep, characterizing the conditions for the occurrence of damage. We suggest planning and management strategies that could decrease the risk of bark stripping to trees in silvopastoral systems.

Keywords

Animal welfare Bovine Crop-livestock-forestry integration Livestock 

References

  1. Alonso-Díaz MA, Torres-Acosta JFJ, Sandoval-Castro CA et al (2008) Is goats’ preference of forage trees affected by their tannin or fiber content when offered in cafeteria experiments? Anim Feed Sci Technol 141:36–48CrossRefGoogle Scholar
  2. Anderson GW, Hawke M, Moore RW (1985) Pine needle consumption and bark stripping by sheep grazing annual pastures in young stands of widely spaced Pinus radiata and P. pinaster. Agrofor Syst 3:37–45CrossRefGoogle Scholar
  3. Ando M, Yokota H-O, Shibata E (2004) Why do sika deer, Cervus nippon, debark trees in summer on Mt. Ohdaigahara, central Japan? Mammal Study 29:73–83CrossRefGoogle Scholar
  4. Ashton A (2005) Bark chewing by the wild horses of Guy Fawkes River National Park, NSW: impacts and causes. The University of New England, ArmidaleGoogle Scholar
  5. Barbosa CMP, Gonzalez LR, Cação MM et al (2014) Danos causados por ovelhas em árvores de eucalipto em um sistema silvipastoril distribuído em dois modelos espaciais. Simpósio internacional de arborização de pastagens em regioes subtropicais, 1. Embrapa Florestas, Colombo, pp 48–56Google Scholar
  6. Barrios C, Beer J, Ibrahim M (1999) Pastoreo regulado y bostas del ganado para la protección de plántulas de Pithecolobium saman en potreros. Revista Agroforestería en las Américas 6:63–65Google Scholar
  7. Beauchamp GK (1995) Chemical signals and repellency: problems and prognosis. In: Mason JR, (ed). Repellents in wildlife management. http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1004&context=nwrcrepellants. Assessed at 26 oct 2017
  8. Berridge KC, Kringelbach ML (2008) Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology 199:457–480PubMedPubMedCentralCrossRefGoogle Scholar
  9. Blair-West JR, Denton DA, McKinley MJ et al (1992) Behavioral and tissue response to severe phosphorus depletion in cattle. Am Physiol-Regul, Integr Comp Physiol 263:R656–R663CrossRefGoogle Scholar
  10. Bryant JP, Provenza FD, Pastor J et al (1991) Interactions between woody plants and browsing mammals mediated by secondary metabolites. Annu Rev Ecol Syst 22:431–446CrossRefGoogle Scholar
  11. da Silva GS, Borges WLB, Freitas RS et al (2012) Damage caused by animals in Eucalyptus urograndis H -13 and grancam 1277 in integrated-crop-livestock-forest system. In: International Symposium on Integrated Crop-Livestock Systems, 2.Inra, Porto Alegre, pp 1-4Google Scholar
  12. Day JEL, Kyriazakis I, Rogers PJ (1998) Food choice and intake: towards a unifying framework of learning and feeding motivation. Nutr Res Rev 11:25–43PubMedCrossRefGoogle Scholar
  13. de Oliveira OF, Ferreira RLC, de Almeida ACS et al (2015) Season and rainfall gradient effects on condensed tannin concentrations of woody rangeland species. Revista Brasileira de Ciências Agrárias 10:165–169CrossRefGoogle Scholar
  14. Dias PF, Souto SM, Franco AA (2008) Métodos de introdução de mudas de árvores em pastagem sem proteção e na presença de gado. Embrapa Agrobiologia, SeropédicaGoogle Scholar
  15. Euclides VPB, Euclides Filho K (1998) Uso de animais na avaliação de forrageiras. Embrapa Gado de Corte, Campo GrandeGoogle Scholar
  16. Feng S, Cheng S, Yuan Z, Leitch M, Xu CC (2013) Valorization of bark for chemicals and materials: a review. Renew Sustain Energy Rev 26:560–578CrossRefGoogle Scholar
  17. Gačić PD, Danilović M, Zubić G, Ćirović P (2012) Bark stripping damage by red deer (Cervus elaphus L.) in the fenced rearing Centre Lomnička Reka. Bull Fac For 105:35–50Google Scholar
  18. Gill RMA (1992) A review of damage by mammals in North Temperate Forests: 1.Deer. Forestry. Int J For Res 65:145–169Google Scholar
  19. Ginane C, Bonnet M, Baumont R, Revell DK (2015) Feeding behaviour in ruminants: a consequence of interactions between a reward system and the regulation of metabolic homeostasis. Anim Prod Sci 55:247–260CrossRefGoogle Scholar
  20. Guerreiro MF, Nicodemo MLF, Porfirio-da-Silva V (2015) Vulnerability of ten eucalyptus varieties to predation by cattle in a silvopastoral system. Agrofor Syst 89:743–749CrossRefGoogle Scholar
  21. Gutteridge RC, Shelton HM (1994) Animal production potential of agroforestry systems. In: Copland JW, Djajanegra A, Sabrani M (eds) ACIAR proceedings. Australian Centre for International Agricultural Research, Canberra, pp 7–16Google Scholar
  22. Haines PJ (1997) Integrating trees with livestock grazing. https://rirdc.infoservices.com.au/downloads/97-011.pdf. Accessed 12 Jul 2016
  23. Heady HF (1964) Palatability of herbage and animal preference. J Range Manag 17:76–82CrossRefGoogle Scholar
  24. Kinnaird JW, Welch D, Cummins C (1979) Selective stripping of rowan (Sorbus aucuparia L.) bark by cattle in North-east Scotland. Trans Bot Soc Edinburgh 43:115–125CrossRefGoogle Scholar
  25. Kohari D, Kosako T, Fukasawa M et al (2007) Effect of environmental enrichment by providing trees as rubbing objects in grassland: grazing cattle need tree-grooming. Anim Sci J 78:413–416CrossRefGoogle Scholar
  26. Malafaia P, Barbosa JD, Tokarnia CH et al (2011) Distúrbios comportamentais em ruminantes não associados a doenças: origem, significado e importância. Pesquisa Veterinária Brasileira 31:781–790CrossRefGoogle Scholar
  27. Manteuffel G, Langbein J, Puppe B (2009) Increasing farm animal welfare by positively motivated instrumental behaviour. Appl Anim Behav Sci 118:191–198CrossRefGoogle Scholar
  28. Mason G, Clubb R, Latham N et al (2007) Why and how should we use environmental enrichment to tackle stereotypic behaviour? Appl Anim Behav Sci 102:163–188CrossRefGoogle Scholar
  29. McDowell LR (1996) Feeding minerals to cattle on pasture. Anim Feed Sci Technol 60:247–271CrossRefGoogle Scholar
  30. Medrado MJS, Porfírio-da-Silva V, Dereti RM et al (2009) Danos provocados em eucalipto por bovinos criados em sistema silvipastoril no município de Cruzmaltina. PR. Embrapa Florestas, ColomboGoogle Scholar
  31. Mertens DR (2014) Measuring fiber and its effectiveness in ruminant diets. http://cncps.cornell.edu/files/2014/06/MertensPNC2002-280goex.pdf. Accessed 25 may 2016
  32. Minson DJ (1990) Forage in ruminant nutrition. Academic Press, New YorkGoogle Scholar
  33. Miquelle D, Van Ballenberghe V (1989) Impact of bark stripping by moose on aspen-spruce communities. J Wildl Manag 53:577–586CrossRefGoogle Scholar
  34. Naumann HD, Muir JP, Lambert BD, Tedeschi LO et al (2013) Condensed tannins in the ruminant environment: a perspective on biological activity. J Agric Sci 1:8–20Google Scholar
  35. Newsome T, Wikeem B, Sutherland C (1995) Sheep grazing guidelines for managing vegetation on forest plantations in British Columbia. B.C. ministry of forests, land management handbook#34, 47. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.214.1699&rep=rep1&type=pdf. Accessed 08 Jun 2016
  36. Ngubeni N (2015) Bark re-growth and wood decay in response to bark stripping for medicinal use. University of Stellenbosch, StellenboschGoogle Scholar
  37. Nolte DL (2003) Repellents are socially acceptable tools. Western Forester 48(22–23):2003Google Scholar
  38. O’Reilly-Wapstra JM, Potts BM, McArthur C et al (2005) Effects of nutrient variability on the genetic-based resistance of Eucalyptus globulus to a mammalian herbivore and on plant defensive chemistry. Oecologia 142:597–605PubMedCrossRefGoogle Scholar
  39. Pagiola S, Ramírez E, Gobbi J et al (2007) Paying for the environmental services of silvopastoral practices in nicaragua. Ecol Econ 64:374–385CrossRefGoogle Scholar
  40. Payne WJA (1985) A review of the possibilities for integrating cattle and tree crop production systems in the tropics. For Ecol Manag 12:1–36CrossRefGoogle Scholar
  41. Pearce RB (1996) Antimicrobial defences in the wood of living trees. New Phytol 132:203–233CrossRefGoogle Scholar
  42. Peixoto PV, Malafaia P, Barbosa JD et al (2005) Princípios sobre suplementação mineral e a sanidade de ruminantes. Pesquisa Veterinária Brasileira 25:195–200CrossRefGoogle Scholar
  43. Phillips C (2002) Cattle behaviour and welfare. Blackwell, LondonCrossRefGoogle Scholar
  44. Porfirio-da-Silva V, de Moraes A, Moletta JL et al (2012) Danos causados por bovinos em diferentes espécies arbóreas recomendadas para sistemas silvipastoris. Pesquisa Florestal Brasileira 32:67–76CrossRefGoogle Scholar
  45. Pottier D (1984) Running cattle under trees: an experiment in agroforestry. Unasylva 36:23–27Google Scholar
  46. Provenza FD (1995) Postingestive feedback as an elementary determinant of food preference and intake in ruminants. J Range Manag 48:2–17CrossRefGoogle Scholar
  47. Provenza FD, Meuret M, Gregorini P (2015) Our landscapes, our livestock, ourselves: restoring broken linkages among plants, herbivores, and humans with diets that nourish and satiate. Appetite 95:500–519PubMedCrossRefGoogle Scholar
  48. Rajský M, Vodňanský M, Hell P et al (2008) Influence supplementary feeding on bark browsing by red deer (Cervus elaphus) under experimental conditions. Eur J Wildl Res 54:701–708CrossRefGoogle Scholar
  49. Ralphs MH, Olsen JD (1990) Adverse influence of social facilitation and learning context in training cattle to avoid eating larkspur. J Anim Sci 68:1944–1952PubMedCrossRefGoogle Scholar
  50. Romero C (2006) Trees responses to stem damage. Dissertation, University of Florida, GainesvilleGoogle Scholar
  51. Saint-Andrieux C, Bonenfant C, Toïgo C et al (2009) Factors affecting beech Fagus sylvatica bark stripping by red deer Cervus elaphus in a mixed forest. Wildl Biol 15:187–196CrossRefGoogle Scholar
  52. Sharrow SH, Carlson DH, Emmingham WH et al (1992) Direct impacts of sheep upon douglas-fir trees in two agrosilvopastoral systems. Agrofor Syst 19:223–232CrossRefGoogle Scholar
  53. Sudweeks EM, Ely LO, Mertens DR et al (1981) Assessing minimum amounts and form of roughages in ruminant diets: roughage value index system. J Anim Sci 53:1406–1411CrossRefGoogle Scholar
  54. Tharayil N, Suseela V, Triebwasser DJ et al (2011) Changes in the structural composition and reactivity of Acer rubrum leaf litter tannins exposed to warming and altered precipitation: climatic stress-induced tannins are more reactive. New Phytol 191:132–145PubMedCrossRefGoogle Scholar
  55. Thorhallsdottir AG, Provenza FD, Ralphs DF (1990) Social influences on conditioned food aversions in sheep. Appl Anim Behav Sci 25:45–50CrossRefGoogle Scholar
  56. Verdeihen H, Ballon P, Bernard V et al (2006) Variations in bark-stripping by red deer Cervus elaphus across Europe. Mamm Rev 36:217–234CrossRefGoogle Scholar
  57. Villalba JJ, Provenza FD (2009) Learning and dietary choice in herbivores. Rangel Ecol Manag 62:399–406CrossRefGoogle Scholar
  58. Villalba JJ, Provenza FD, Hall JO (2008) Learned appetites for calcium, phosphorus, and sodium in sheep. J Anim Sci 86:738–747PubMedCrossRefGoogle Scholar
  59. Villalba JJ, Miller J, Hall JO et al (2013) Preference for tanniferous (Onobrychis viciifolia) and non-tanniferous (Astragalus cicer) forage plants by sheep in response to challenge infection with Haemonchus contortus. Small Rumin Res 112:199–207CrossRefGoogle Scholar
  60. Villalba JJ, Miller J, Ungar ED et al (2014) Ruminant self-medication against gastrointestinal nematodes: evidence, mechanism, and origins II. Parasite.  https://doi.org/10.1051/parasite/2014032 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Vospernik S (2006) Probability of bark stripping damage by red deer (Cervus elaphus) in Austria. Silva Fennica 40:589–601CrossRefGoogle Scholar
  62. Wechsler B, Lea SEG (2007) Adaptation by learning: its significance for farm animal husbandry. Appl Anim Behav Sci 108:197–214CrossRefGoogle Scholar
  63. Wemelsfelder F (1984) Animal boredom: Is a scientific study of the subjective experiences of animals possible? In: Fox MW, Mickley LD (eds) Advances in animal welfare science 1984/85 The Humane Society of the United States, Washington, pp 115–154Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Maria Luiza Franceschi Nicodemo
    • 1
    Email author
  • Vanderley Porfírio-da-Silva
    • 2
  1. 1.Embrapa Pecuária SudesteSão CarlosBrazil
  2. 2.Embrapa FlorestasColomboBrazil

Personalised recommendations