Advertisement

Agroforestry Systems

, Volume 93, Issue 1, pp 123–133 | Cite as

In situ ruminal degradation and effective degradation of foliage from six tree species during dry and rainy seasons in Veracruz, Mexico

  • Lidia Ascencio-Rojas
  • Braulio Valles-de la Mora
  • Epigmenio Castillo-GallegosEmail author
  • Muhammad Ibrahim
Article

Abstract

Six tree species (Diphysa robinioides, Gliricidia sepium, Erythrina americana, Bursera simaruba, Bambusa vulgaris and Zanthoxylum riedelianum) were investigated for in situ ruminal dry matter degradation, and effective degradability at three passage rates, in Veracruz, Mexico. Leaves, stems and petioles were randomly collected from trees during dry and rainy seasons to estimate, dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), and in situ DM degradation using the nylon-bag technique. Ruminal degradation of organic matter, crude protein (ISCPD) and effective dry matter degradability (ED) were also calculated. The trial was a completely randomized design with a split-plot arrangement of factors, being the main plot factor the species, and the sub-plot factor the season. Legume trees showed the highest CP values for both dry (23.2–18.5%) and rainy seasons (24.2–19.8%). Organic matter showed less variability, which ranged in all species from 87.6% to 93.1%. For NDF during both seasons, B. vulgaris had the highest value (68.5%) contrary to D. robinioides: 36.8%. The highest degradation potential (a + b) and ED corresponded to D. robinioides (80.5% y 65.3%) and G. sepium (78.4% y 66.6%) species, respectively, for both seasons. OM ruminal degradation (ISOMD) averaged 46.9% for the six tree species. For ISCPD, no differences among species were found (P ≥ 0.05), and G. sepium had the highest values (90.5%). Based on the moderate to high CP values and the degradation characteristics, the assessed species constitute an alternative supply for different animal production systems, especially during the dry season .

Keywords

Tropical fodder trees Chemical composition In situ degradability Effective degradability 

Notes

Acknowledgements

The International Fellowship Program of the Ford Foundation and the Institute International of Education sponsored this project. The Centro de Enseñanza, Investigación y Extensión en Ganadería Tropical (CEIEGT), Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, provided laboratory facilities.

References

  1. Aban ML, Bestil LC (2013) In situ ruminal degradation of foliage with varying pH levels from selected trees and shrubs. Philipp J Vet Anim Sci 39:173–182Google Scholar
  2. Absalón-Medina VA, Blake RW, Fox DG, Juárez-Lagunes FI, Nicholson ChF, Canudas-Lara EG, Rueda-Maldonado B (2012) Limitations and potentials of dual-purpose cow herds in Central Coastal Veracruz, Mexico. Trop Anim Health Prod 44:1131–1142.  https://doi.org/10.1007/s11250-011-0049-1 CrossRefPubMedGoogle Scholar
  3. Alonso-Díaz MA, Castillo-Gallegos E, Basurto-Camberos H, Jarillo-Rodríguez J, Valles-de la Mora B (2007) Respuesta productiva de una pastura de gramas nativas bajo pastoreo rotacional intensivo en clima cálido húmedo. Avances en Investigación Agropecuaria 11:35–55Google Scholar
  4. Anele UY, Arigbede OM, Südekum KH, Oni AO, Jolaosho AO, Olanite JA, Adeosun AI, Dele PA, Ike KA, Akinola OB (2009) Seasonal chemical composition, in vitro fermentation and in sacco dry matter degradation of four indigenous multipurpose tree species in Nigeria. Anim Feed Sci Technol 154:47–57.  https://doi.org/10.1016/j.anifeedsci.2009.07.007 CrossRefGoogle Scholar
  5. Ascencio-Rojas L, Valles B, Ibrahim M, Castillo-Gallegos E (2013) Use and management of tree fodder resources on farms in Central Veracruz, Mexico. Avances en Investigación Agropecuaria 17:95–117Google Scholar
  6. Ayala BA, Capetillo LC, Cetina GR, Sandoval CC, Zapata CC (2007) Composición química-nutricional de árboles forrajeros. Universidad Autónoma de Yucatán (Mexico)Google Scholar
  7. Babayemi J, Bamikole M (2006) Supplementary value of Tephrosia bracteolate, Tepohrosia candida, Leucaena leucocephala and Gliricidia sepium hay for West African dwarf goats kept on range. J Cent Euro Agric 7:323–328Google Scholar
  8. Bosman HG, Castillo GE, Valles MB, De Lucía GR (1990) Composición botánica y nodulación de leguminosas en pasturas nativas de la planicie costera del Golfo de México. Pasturas Tropicales (Colombia) 12:2–8Google Scholar
  9. Brown WF, Pitman WD (1991) Concentration and degradation of nitrogen and fibre fractions in selected tropical grasses and legumes. Trop Grassl 25:305–312Google Scholar
  10. Castillo-Gallegos E, Rascón-Chincoya R, García-González D, Jarillo-Rodríguez J, Aluja-Schunemann A, Mannetje L (2014) Comportamiento ingestivo de vacas en una asociación grama nativa/Arachis pintoi en el trópico húmedo veracruzano. Rev Mex Cienc Pecu 5:487–504Google Scholar
  11. Chen XB (2000) NEWAY: curve fitting programme software for Orskov’s model (DOS version). International Feed Resources Unit, Macaulay Land Use Research Institute, Aberdeen, Scotland: http://www.mluri.sari.ac.uk/IFRU/fcurve.html. Accessed 26 April 2016
  12. Jiménez FG (2000) Árboles y arbustos forrajeros de la región Maya-Tzotzil del norte de Chiapas, México. Dissertation, Universidad Autónoma de Yucatán (Mexico)Google Scholar
  13. Kaitho RJ (1997) Nutritive value of browses as protein supplement(s) to poor quality roughages. Dissertation, Wageningen Agricultural UniversityGoogle Scholar
  14. Kumar R (1992) Anti-nutritional factors, the potential risks of toxicity and methods to alleviate them. In: Speedy A, Pugliese PL (eds) Legume trees and other fodder trees as protein sources for livestock., p. 145–160. (FAO Animal Production and Health Paper 102) Rome, pp 145–160Google Scholar
  15. Ku-Vera J, Ramírez L, Jiménez F, Alayón A, Ramírez L (1999) Árboles y arbustos para la producción animal en el trópico mexicano. In: Sánchez, MD, Rosales M (eds) Agroforestería para la producción animal en América Latina. FAO, Rome, document No. 143, pp 161–180Google Scholar
  16. Ørskov ER (1982) Protein nutrition in ruminants. Academic Press, New YorkGoogle Scholar
  17. Ørskov ER, McDonald I (1979) The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J Agric Sci 40:2903–2910.  https://doi.org/10.1017/S0021859600063048 CrossRefGoogle Scholar
  18. Ørskov ER, Hovell FD, Mould F (1980) The use of the nylon bag technique for the evaluation of feedstuffs. Trop Anim Prod 5:195–213Google Scholar
  19. Pedraza RM, La OJ, Estévez J, Guevara G, Martínez S (2003) Degradabilidad ruminal efectiva y digestibilidad intestinal in vitro del nitrógeno del follaje de leguminosas arbóreas tropicales. Pastos y Forrajes 26:237–241Google Scholar
  20. Pinto RR (2002) Árboles y arbustos con potencial forrajero del Valle central de Chiapas. Dissertation, Universidad Autónoma de Yucatán (México)Google Scholar
  21. Pinto R, Gomez H, Martinez B, Hernandez A, Medina F, Ortega L, Ramirez L (2004) Especies forrajeras utilizadas bajo silvopastoreo en el centro de Chiapas. Avances en Investigación Agropecuaria 8:53–67Google Scholar
  22. Pinto-Ruiz R, Hernández-Sánchez D, Ramírez-Avilés L, Sandoval-Castro CA, Cobos-Peralta M, Gómez-Castro H (2009) Taninos y fenoles en la fermentación in vitro de leñosas forrajeras tropicales. Agron Mesoam 20:81–89CrossRefGoogle Scholar
  23. Poppi D, Mc Lennan SR (1995) Protein and energy utilization by ruminants at pasture. J Anim Sci 73:278–290CrossRefGoogle Scholar
  24. SAS (2010) SAS/STAT 9.22 User’s guide. Cary, NC. Chapter 39: The GLM Procedure (Book Excerpt). SAS Institute Inc. NC, USA, pp 2986–3177Google Scholar
  25. Shem MN, Ørskov ER, Kimambo AE (1995) Prediction of voluntary dry-matter intake, digestible dry-matter intake and growth rate of cattle from the degradation characteristics of tropical foods. Anim Sci 60:65–74.  https://doi.org/10.1017/S1357729800008146 CrossRefGoogle Scholar
  26. Solorio-Sánchez FJ, Armendariz-Yañez I, Ku-Vera J (2000) Chemical composition and in vitro dry matter digestibility of some fodder trees from South-east México. Livestock Research for Rural Development. http://www.lrrd.org/lrrd12/4/solo124a.htm. Accessed 27 November 2015
  27. Sosa RE, Pérez RD, Ortega RL, Zapata BG (2004) Evaluación del potencial forrajero de árboles y arbustos tropicales para la alimentación de ovinos. Téc Pec Méx 42:129–144Google Scholar
  28. Teferedegne B (2000) New perspectives on the use of tropical plants to improve ruminant nutrition. Proc Nutr Soc 59:209–214.  https://doi.org/10.1017/S0029665100000239 CrossRefPubMedGoogle Scholar
  29. Valles B, Castillo E, Barragán J, Jarillo J, Ocaña E (2010) Dinámica de una pastura mixta bajo apacentamiento intensivo en el trópico húmedo veracruzano. Avances en Investigación Agropecuaria 14:3–21Google Scholar
  30. Van Soest P (1994) Nutritional ecology of the ruminant. Cornell University Press, Ithaca, p 528Google Scholar
  31. Van Soest P, Robertson JB, Lewis BA (1991) Methods for dietary fiber neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597.  https://doi.org/10.3168/jds.S0022-0302(91)78551-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro Agronómico Tropical de Investigación y Enseñanza (CATIE)TurrialbaCosta Rica
  2. 2.Centro de Enseñanza, Investigación y Extensión en Ganadería Tropical (CEIEGT), Facultad de Medicina Veterinaria y ZootecniaUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations