Advertisement

Astaxanthin production by Xanthophyllomyces dendrorhous growing on a low cost substrate

  • Teresa Gervasi
  • Antonello SantiniEmail author
  • Patricia Daliu
  • Abdelfattah Z. M. Salem
  • Claudio Gervasi
  • Vito Pellizzeri
  • Luna Barrega
  • Paolo De Pasquale
  • Giacomo Dugo
  • Nicola Cicero
Article

Abstract

The aim of the study was to evaluate the new approaches for the reduction of food wastes, promoting industrial by-products and food waste recovery. The possibility, starting from fruit and vegetable waste (FVW), of producing astaxanthin from Xanthophyllomyces dendrorhous, in fermentative process using a batch mode was evaluated and the effect of light intensity on carotenoid biosynthesis from the yeast, has been investigated. Astaxanthin is a red oxygenated carotenoid valuable in different industries such as aquaculture, nutraceutical, pharmaceutical, and food. The results obtained in this study highlight that the growth and carotenogenesis of X. dendrorhous on FVW and on the synthetic medium, used as reference, were not suggestively different, neither for yeast growth, being 6.2 g/l and 5.3 g/l, nor for astaxanthin production, resulting 410 μg/g and 355 μg/g, respectively. This preliminary research study and show the chance for reducing waste and pollution from food and agro-industrial wastes discussing the opportunity of producing astaxanthin from X. dendrorhous using low-cost substrates.

Keywords

Astaxanthin Carotenoids Waste Recovery Feed Food 

Notes

Compliance with ethical standards

Conflict of interest

Authors declare that they have no conflict of interest.

References

  1. Aghraz A, Benameur Q, Gervasi T, Ait Dra L, Ben-Mahdi MH, Larhsini M, Markouk M, Cicero N (2018) Antibacterial activity of Cladanthus arabicus and Bubonium imbricatum essential oils alone and in combination with conventional antibiotics against Enterobacteriaceae isolates. Lett Appl Microbiol 67(2):175–182Google Scholar
  2. Alesci A, Salvo A, Lauriano ER, Gervasi T, Palombieri D, Bruno M, Pergolizzi S, Cicero N (2015) Production and extraction of astaxanthin from Phaffia rhodozyma and its biological effect on alcohol-induced renal hypoxia in Carassius auratus. Nat Prod Res 12:1122–1126Google Scholar
  3. Amado IR, Vázquez JA (2015) Mussel processing wastewater: a low-cost substrate for the production of astaxanthin by Xanthophyllomyces dendrorhous. Microb Cell Fact 14:177.  https://doi.org/10.1186/s12934-015-0375-5 Google Scholar
  4. An GH, Johnson EA (1990a) Influence of light on growth and pigmentation of the yeast Phaffi a rhodozyma. Antonie van Leeuwenhoek J Microbiol 57:191–203Google Scholar
  5. An GH, Johnson EA (1990b) Influence of light on growth and pigmentation of the yeast Phaffia rhodozyma. Antonie Van Leeuwenhoek 57:191–203Google Scholar
  6. Benameur Q, Gervasi T, Pellizzeri V, Pľuchtová M, Tali-Maama H, Assaous F, Guettou B, Rahal K, Gruľová D, Dugo G, Marino A, Ben-Mahdi MH (2018) Antibacterial activity of Thymus vulgaris essential oil alone and in combination with cefotaxime against blaESBL producing multidrug resistant Enterobacteriaceae isolates. Nat Prod Res 4:1–8Google Scholar
  7. Bhosale P (2004) Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl Microbiol Biotechnol 63:351–361Google Scholar
  8. Bumbak F, Cook S, Zachleder V, Hauser S, Kovar K (2011) Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Appl Microbiol Biotechnol 91:31–46Google Scholar
  9. de la Fuente JL, Rodríguez-Sáiz M, Schleissner C, Díez B, Peiro E, Barredo JL (2010) High-titer production of astaxanthin by the semi-industrial fermentation of Xanthophyllomyces dendrorhous. J Biotechnol 148:144–146.  https://doi.org/10.1016/j.jbiotec.2010.05.004 Google Scholar
  10. Del Campo JA, García-González M (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174Google Scholar
  11. Di Stefano V, Pitonzo R, Cicero N, D’Oca MC (2015) Mycotoxin contamination of animal feedingstuff: detoxification by gamma-irradiation and reduction of aflatoxins and ochratoxin A concentrations. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 31(12):2034–2039Google Scholar
  12. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugar and related substances. Anal Chem 28:350–356Google Scholar
  13. European Commission (FP7) (2016) Coordination and support action, FUSIONS. https://www.eu-fusions.org/index.php. Accessed Jan 2018
  14. Galanakis CM (2015) Food waste recovery 1st edition. In: Processing technologies and industrial techniques. Elsevier, Academic Press, Cambridge. ISBN: 978-0-12-800351-0Google Scholar
  15. Gervasi T, Oliveri F, Gottuso V, Squadrito M, Bartolomeo G, Cicero N, Dugo G (2016) Nero d’Avola and Perricone cultivars: determination of polyphenols, flavonoids and anthocyanins in grapes and wines. Nat Prod Res 30(20):2329–2337Google Scholar
  16. Gervasi T, Pellizzeri V, Calabrese G, Di Bella G, Cicero N, Dugo G (2018a) Production of single cell protein (SCP) from food and agricultural waste by using Saccharomyces cerevisiae. Nat Prod Res 32(6):648–653Google Scholar
  17. Gervasi T, Pellizzeri V, Benameur Q, Gervasi C, Santini A, Cicero N, Dugo G (2018b) Valorization of raw materials from agricultural industry for astaxanthin and β-carotene production by Xanthophyllomyces dendrorhous. Nat Prod Res 32(13):1554–1561Google Scholar
  18. Global Astaxanthin market-sources (2015) Technologies and applications. Habsiguda Hyderabad, India. Retrieved from: industry-experts.com. Accessed Dec 2018Google Scholar
  19. Gustavsson, J, Cederberg C, Sonesson U, Emanuelsson A (2013) Global food losses and food waste: extent, causes and prevention. SIK report no. 857. Swedish Institute for Food and Biotechnology. http://www.fao.org/docrep/014/mb060e/mb060e02.pdf
  20. Liu XJ, Zhang RJ, McClements DJ, Li F, Liu H, Cao Y, Xiao H (2018) Nanoemulsion-based delivery systems for nutraceuticals: influence of long-chain triglyceride (LCT) type on in vitro digestion and astaxanthin bioaccessibility. Food Biophys 13(4):412–421Google Scholar
  21. Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167Google Scholar
  22. Mata-Gómez LC, Montáñez JC, Méndez-Zavala AA, Aguilar CN (2014) Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Fact 13:1–11Google Scholar
  23. Mikusova P, Ritieni A, Santini A, Juhasova G, Srobarova A (2010) Contamination by moulds of grape berries in Slovakia. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 27(5):738–747Google Scholar
  24. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428Google Scholar
  25. Naviglio D, Romano R, Pizzolongo F, Santini A, De Vivo A, Schiavo L, Nota G, Spagna Musso S (2007) Rapid determination of esterified glycerol and glycerides in triglycerides fats and oils by means of periodate method after transesterification. Food Chem 102:399–405Google Scholar
  26. Paritosh K, Kushwaha SK, Yadav M, Pareek N, Chawade A, Vivekanand V (2017) Food waste to energy: an overview of sustainable approaches for food waste management and nutrient recycling. Biomed Res Int 2017:2370927Google Scholar
  27. Pľuchtová M, Gervasi T, Benameur Q, Pellizzeri V, Gruľová D, Campone L, Sedlák V, Cicero N (2018) Antimicrobial activity of two Mentha species essential oil and its dependence on different origin and chemical diversity. Nat Prod Commun 13(8):1051–1054Google Scholar
  28. Research and Markets (2018) Carotenoids market by type (astaxanthin, beta-carotene, canthaxanthin, lutein, lycopene, and zeaxanthin), source (synthetic and natural), application (supplements, food, feed, and cosmetics), and by region—global trends and forecasts to 2021. Analyst—Andrew McWilliams Code—FOD025F. Accessed Dec 11, 2018. https://www.researchandmarkets.com/reports/3776325/carotenoids-market-by-type-astaxanthin-beta#relb1-4538518
  29. Rodríguez-Sáiz M, de la Fuente JL, Barredo JL (2010) Xanthophyllomyces dendrorhous for the industrial production of astaxanthin. Appl Microbiol Biotechnol 88(3):645–658Google Scholar
  30. Rotondo A, Salvo A, Giuffrida D, Dugo G, Rotondo E (2011) NMR analysis of aldehydes in sicilian extra-virgin olive oils by DPFGSE techniques. AAPP Phys Math Nat Sci. 1:1.  https://doi.org/10.1478/c1a8901002 Google Scholar
  31. Saini RK, Moon SH, Keuma Y-S (2018) An updated review on use of tomato pomace and crustacean processing waste to recover commercially vital carotenoids. Food Res Int 108:516–529Google Scholar
  32. Salvo A, La Torre GL, Rotondo A, Mangano V, Casale KE, Pellizzeri V, Clodoveo ML, Corbo F, Cicero N, Dugo G (2017a) Determination of squalene in organic extra virgin olive oils (EVOOs) by UPLC/PDA using a single-step spe sample preparation. Food Anal Method 10:1377–1385Google Scholar
  33. Salvo A, Rotondo A, La Torre G, Cicero N, Dugo G (2017b) NMR determination of 1,2/1,3-diglycerides in sicilian extra-virgin olive oils by 1H-NMR over a one-year storage period. Nat Prod Res 31(7):822–828Google Scholar
  34. Santini A, Novellino E (2017) Nutraceuticals in hypercholesterolaemia: an overview. Br J Pharmacol 174(11):1450–1463Google Scholar
  35. Santini A, Tenore GC, Novellino E (2017) Nutraceuticals: a paradigm of proactive medicine. Eur J Pharm Sci 96:53–61Google Scholar
  36. Thies F, Mills LM, Moir S, Masson LF (2017) Cardiovascular benefits of lycopene: fantasy or reality? Proc Nutr Soc 76(2):22–129Google Scholar
  37. Tropea A, Gervasi T, Melito MR, Lo Curto A, Lo Curto R (2013) Does the light influence astaxanthin production in Xanthophyllomyces dendrorhous? Nat Prod Res 27(7):647–653Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Teresa Gervasi
    • 1
  • Antonello Santini
    • 2
    Email author
  • Patricia Daliu
    • 2
  • Abdelfattah Z. M. Salem
    • 3
  • Claudio Gervasi
    • 1
  • Vito Pellizzeri
    • 1
  • Luna Barrega
    • 4
  • Paolo De Pasquale
    • 1
  • Giacomo Dugo
    • 1
    • 4
  • Nicola Cicero
    • 1
    • 4
  1. 1.Department of Biomedical and Dental Sciences and Morphofunctional ImagingUniversity of MessinaMessinaItaly
  2. 2.Department of PharmacyUniversity of Napoli Federico IINaplesItaly
  3. 3.Facultad de Medicina Veterinaria y ZootecniaUniversidad Autónoma del Estado de MéxicoTolucaMexico
  4. 4.Science4Life, Spin Off CompanyUniversity of MessinaMessinaItaly

Personalised recommendations