Advertisement

Agroforestry Systems

, Volume 93, Issue 1, pp 39–49 | Cite as

Forage productivity and nutritive value during pasture renovation in integrated systems

  • José Ricardo Macedo PezzopaneEmail author
  • Alberto Carlos Campos Bernardi
  • Cristiam Bosi
  • Patricia Perondi Anchão Oliveira
  • Matheus Henrique Marconato
  • André de Faria Pedroso
  • Sérgio Novita Esteves
Article

Abstract

Integrated crop-livestock-forestry systems are strategies to diversify production in the same area, aiming at higher sustainability. Corn is one of the most used crops in integrated systems due to its multiple uses on the farm. The objective of this study was to evaluate the effect of light restriction on morphological and productive characteristics of the forage components (corn for silage and pastures) in integrated livestock production systems. The experiment was carried out on Embrapa’s integrated systems in São Carlos, SP, Brazil, during two growing seasons. In the integrated crop-livestock (iCL) system corn was sown simultaneously with Piatã-grass. In the integrated crop-livestock- forestry (iCLF) system, besides corn and Piatã-grass, Eucalyptus urograndis trees were planted in single 15 × 2 m rows. Corn productivity and pasture yield and nutritive value were evaluated in iCL and iCLF systems. In iCLF, evaluations were made in four positions relative to the tree lines: 1.5, 3.75, 7.5, and 11.25 m. Photosynthetically active radiation (PAR) transmission by trees was also measured in the same positions. Results of the corn crop indicated that the position relative to the tree lines affected (P < 0.001) all morphological characteristics and production parameters. Production was not affected by position relative to the tree lines in the first year but was lower in the position closer to the trees in the second year. As an average of all positions evaluated in iCLF, corn DM production in the first agricultural year was 43.3% inferior compared to the second year (5266.1 vs. 9816.7 kg DM ha−1). In iCL, the average corn DM production for the two years was 10082 kg DM ha−1. For the corn, the relationship between PAR transmission and the relative yield (production in each position in iCLF divided by the production in iCL) was influenced by drought in the 2013/2014 growing season. Considering the results for the renovated pastures, position relative to the tree lines affected pasture height (P < 0.0001), specific leaf area (P < 0.0012), digestibility (P < 0.0085) and crude protein (P < 0.0001).

Keywords

Biomass Eucalyptus urograndis (GG100 Clone) Photosynthetically active radiation (PAR) Urochloa brizantha cv. Piatã 

References

  1. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements. FAO, RomeGoogle Scholar
  2. Almeida RG, Andrade CMS, Paciullo DS, Fernandes PC, Cavalcante ACR, Barbosa RA, Valle CB (2013) Brazilian agroforestry systems for cattle and sheep. Trop Grasslands-Forrajes Trop 1:175–183CrossRefGoogle Scholar
  3. Andrade CMS, Valentim JF, Carneiro JC (2002) Árvores de baginha (Stryphnodendron guianense (Aubl.) Benth.) em ecossistemas de pastagens cultivadas na Amazônia Ocidental. Revista Brasileira de Zootecnia/Brazilian. J Anim Sci 31(2):574–582.  https://doi.org/10.1590/S1516-35982002000300006 CrossRefGoogle Scholar
  4. Balbino LC, Cordeiro LAM, Silva VP, Moraes A, Martinez GB, Alvarenga RC, Kichel NA, Fontaneli RS, Santos HP, Franchini JC, Galerani PR (2011) Evolução tecnológica e arranjos produtivos de sistemas de integração lavoura-pecuária-floresta no Brasil. Pesqui Agropecu Bras.  https://doi.org/10.1590/S0100-204X2011001000001 CrossRefGoogle Scholar
  5. Barro RS, Saibro JC, Medeiros RB, Silva JL, Varella AC (2008) Rendimento de forragem e valor nutritivo de gramíneas anuais de estação fria submetidas a sombreamento por Pinus elliottii e ao sol pleno. Revista Brasileira de Zootecnia 37(10):1721–1727CrossRefGoogle Scholar
  6. Bertomeu M (2012) Growth and yield of maize and timber trees in smallholder agroforestry systems in Claveria, northern Mindanao, Philippines. Agrofor Syst 84:73–87.  https://doi.org/10.1007/s10457-011-9444-x CrossRefGoogle Scholar
  7. Bosi C, Pezzopane JRM, Sentelhas PC, Santos PM, Nicodemo MLF (2014) Produtividade e características biométricas do capim-braquiária em sistema silvipastoril. Pesqui Agropecu Bras 49(6):449–456.  https://doi.org/10.1590/S0100-204X2014000600006 CrossRefGoogle Scholar
  8. Calderano Filho B, Santos HG, Fonseca OOM, Santos RD, Primavesi O, Primavesi AC (1998) Os solos da Fazenda Canchim, Centro de Pesquisa de Pecuária do Sudeste, São Carlos, SP: Levantamento semidetalhado, propriedades e potenciais. Rio de Janeiro: Embrapa-CNPS/São Carlos: Embrapa-CPPSE. (Embrapa—CNPS. Boletim de Pesquisa, 7). (Embrapa—CPPSE. Boletim de Pesquisa, 2)Google Scholar
  9. Deiss L, Moraes AD, Pelissari A, Skora Neto F, Silva VPD, Andreolla VRM (2014) Oat growth under different nitrogen doses in eucalyptus alley cropping system in subtropical Brazil. Rev Ciênc Agron 45:1014–1023.  https://doi.org/10.1590/S1806-66902014000500017 CrossRefGoogle Scholar
  10. Gil J, Siebold M, Berger T (2015) Adoption and development of integrated crop-livestock-forestry systems in Mato Grosso, Brazil. Agric Ecosyst Environ 199:394–406.  https://doi.org/10.1016/j.agee.2014.10.008 CrossRefGoogle Scholar
  11. Guenni O, Seiter S, Figueroa R (2008) Growth responses of three Brachiaria species to light intensity and nitrogen supply. Trop Grassl 42:75–87Google Scholar
  12. Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software packag or education and data analysis. Palaeontol Electron 4:1–9pGoogle Scholar
  13. Jose S, Gillespie AR, Pallardy SG (2004) Interspecific interactions in temperate agroforestry. Agrofor Syst 61–62(1):237–255.  https://doi.org/10.1023/B:AGFO.0000029002.85273.9b CrossRefGoogle Scholar
  14. Mendes MMS, Lacerda CF, Cavalcante ACR, Fernandes FEP, Oliveira TS (2013) Desenvolvimento do milho sob influência de árvores de pau-branco em sistema agrossilvipastoril. Pesqui Agropecu Bras 48(10):1342–1350.  https://doi.org/10.1590/S0100-204X2013001000005 CrossRefGoogle Scholar
  15. Molua EL (2005) The economics of tropical agroforestry systems: the case of agroforestry farms in Cameroon. For Policy Econ 7:199–211.  https://doi.org/10.1016/S1389-9341(03)00032-7 CrossRefGoogle Scholar
  16. Moraes A, Carvalho PCDF, Lustosa SBC, Lang CR, Deiss L (2014) Research on integrated crop-livestock systems in Brazil. Rev Ciênc Agron 45:1024–1031.  https://doi.org/10.1590/S1806-66902014000500018 CrossRefGoogle Scholar
  17. Newman SM, Bennett K, Wu Y (1997) Performance of maize, beans and ginger as intercrops in Paulownia plantations in China. Agrofor Syst 39:23–30.  https://doi.org/10.1023/A:1005938310106 CrossRefGoogle Scholar
  18. Nicodemo MLF, Silva PS, Thiago LRLS (2004) Sistemas silvipastoris: introdução de árvores na pecuária do Centro- Oeste brasileiro Campo Grande: Embrapa Gado de Corte, p. 37 (Documentos/Embrapa Gado de Corte)Google Scholar
  19. Nicodemo MLF, Castiglioni PP, Pezzopane JRM, Tholon P, Carpanezzi AA (2016) Reducing competition in agroforestry by pruning native trees. Rev Árvore 40:509–518.  https://doi.org/10.1590/0100-67622016000300014 CrossRefGoogle Scholar
  20. Ong CK (1996) Quantifying the effects of tree–crop interaction. In: Ong CK, Huxley P (eds) Tree–crop interactions. CAB International Press, Wallingford, pp 1–23Google Scholar
  21. Paciullo DSC, Carvalho CAB, Aroeira LJM, Morenz MJF, Lopes FCF, Rossiello ROP (2007) Morfofisiologia e valor nutritivo do capim-braquiária sob sombreamento natural e a sol pleno. Pesqui Agropecu Bras 42:573–579.  https://doi.org/10.1590/S0100204X2007000400016 CrossRefGoogle Scholar
  22. Paciullo DSC, Campos NR, Gomide CAM, Castro CRT, Tavela RC, Rossiello ROP (2008) Crescimento de capim-braquiária influenciado pelo grau de sombreamento e pela estação do ano. Pesqui Agropecu Bras 43:917–923.  https://doi.org/10.1590/S0100204X2008000700017 CrossRefGoogle Scholar
  23. Paciullo DSC, Gomide CAM, Castro CRT, Fernandes PB, Müller MD, Pires MFÁ, Fernandes EM, Xavier DF (2011a) Características produtivas e nutricionais do pasto em sistema agrossilvipastoril, conforme a distância das árvores. Pesqui Agropecu Bras 46:1176–1183.  https://doi.org/10.1590/S0100204X2011001000009 CrossRefGoogle Scholar
  24. Paciullo DSC, Fernandes PB, Gomide CAM, Castro CRT, Sobrinho FS, Carvalho CAB (2011b) The growth dynamics in Brachiaria species according to nitrogen dose and shade. Rev Bras Zootec 40:270–276.  https://doi.org/10.1590/S1516-35982011000200006 CrossRefGoogle Scholar
  25. Pandey CB, Verma SK, Dagar JC, Srivastava RC (2011) Forage production and nitrogen nutrition in three grasses under coconut tree shades in the humid-tropics. Agrofor Syst 83:1–12.  https://doi.org/10.1007/s10457-011-9407-2 CrossRefGoogle Scholar
  26. Pang K, Van Sambeek JW, Lin C-H, Jose S, Garrett HE (2017a) Responses of legumes and grasses to non-, moderate, and dense shade in Missouri, USA. I. Forage yield and its species-level plasticity. Agrofor Syst.  https://doi.org/10.1007/s10457-017-0067-8 CrossRefGoogle Scholar
  27. Pang K, Van Sambeek JW, Navarrete-Tindall NE, Lin C-H, Jose S, Garrett HE (2017b) Responses of legumes and grasses to non-, moderate, and dense shade in Missouri, USA. II. Forage quality and its species-level plasticity. Agrofor Syst.  https://doi.org/10.1007/s10457-017-0068-7 CrossRefGoogle Scholar
  28. Reynolds PE, Simpson JA, Thevathasan NV, Andrew MG (2007) Effects of tree competition on corn and soybean photosynthesis, growth, and yield in a temperate tree-based agroforestry intercropping system in southern Ontario, Canada. Ecol Eng 29:362–371.  https://doi.org/10.1016/j.ecoleng.2006.09.024 CrossRefGoogle Scholar
  29. Silva VP (2012) Produtividade em sistema de integração lavoura-pecuária—floresta no subtrópico brasileiro. PhD Thesis. Universidade Federal do Paraná, Curitiba, p. 110Google Scholar
  30. Silva FAZ, Azevedo CAV (2006) A new version of the assistat-statistical assistance software. In: World congress on computers in agriculture, 4, Orlando-FL-USA: Anais, Orlando: American Society of Agricultural and Biological Engineers, pp. 393–396Google Scholar
  31. Sousa LF, Mauricio RM, Gonçalves LC (2007) Produtividade e valor nutritivo da Brachiaria brizantha cv Marandu em um sistema silvipastoril. Arq Bras Med Vet Zootec 59(4):1029–1037.  https://doi.org/10.1590/S0102-09352007000400032 CrossRefGoogle Scholar
  32. Thornthwaite CW, Mather JR (1955) The water balance. Centerton, New JerseyGoogle Scholar
  33. Wilson JR (1998) Influence of planting four tree species on the yield and soil water status of gree panic pasture in subhumid southeast queensland. Trop Grassl 32:209–220Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • José Ricardo Macedo Pezzopane
    • 1
    Email author
  • Alberto Carlos Campos Bernardi
    • 1
  • Cristiam Bosi
    • 2
  • Patricia Perondi Anchão Oliveira
    • 1
  • Matheus Henrique Marconato
    • 3
  • André de Faria Pedroso
    • 1
  • Sérgio Novita Esteves
    • 1
  1. 1.Brazilian Agricultural Research Corporation, Embrapa Southeast LivestockSão CarlosBrazil
  2. 2.“Luiz de Queiroz” College of AgricultureUniversity of São PauloPiracicabaBrazil
  3. 3.Centro Universitário de Araraquara – UniaraAraraquaraBrazil

Personalised recommendations