Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Pathological features of vessel co-option versus sprouting angiogenesis

Abstract

Cancer cells can use existing blood vessels to acquire a vasculature. This process is termed ‘vessel co-option’. Vessel co-option is an alternative to the growth of new blood vessels, or angiogenesis, and is adopted by a wide range of human tumour types growing within numerous tissues. A complementary aspect of this process is extravascular migratory tumour spread using the co-opted blood vessels as a trail. Vessel co-opting tumours can be discriminated from angiogenic tumours by specific morphological features. These features give rise to distinct histopathological growth patterns that reflect the interaction of cancer cells with the microenvironment of the organ in which they thrive. We will discuss the histopathological growth patterns of vessel co-option in the brain, the liver and the lungs. The review will also highlight evidence for the potential clinical value of the histopathological growth patterns of cancer. Vessel co-option can affect patient outcomes and resistance to cancer treatment. Insight into the biological drivers of this process of tumour vascularization will yield novel therapeutic strategies.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Kuczynski EA, Vermeulen PB, Pezzella F, Kerbel RS, Reynolds AR (2019) Vessel co-option in cancer. Nat Rev Clin Oncol 16(8):469–493. https://doi.org/10.1038/s41571-019-0181-9

  2. 2.

    Donnem T, Reynolds AR, Kuczynski EA, Gatter K, Vermeulen PB, Kerbel RS, Harris AL, Pezzella F (2018) Non-angiogenic tumours and their influence on cancer biology. Nat Rev Cancer 18(5):323–336. https://doi.org/10.1038/nrc.2018.14

  3. 3.

    Erichsen J (1861) Zwei falle von carcinosis acuta miliaris. Virchows Arch 21:465–479

  4. 4.

    Pezzella F, Pastorino U, Tagliabue E, Andreola S, Sozzi G, Gasparini G, Menard S, Gatter KC, Harris AL, Fox S, Buyse M, Pilotti S, Pierotti M, Rilke F (1997) Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am J Pathol 151(5):1417–1423

  5. 5.

    Vermeulen PB, Colpaert C, Salgado R, Royers R, Hellemans H, Van Den Heuvel E, Goovaerts G, Dirix LY, Van Marck E (2001) Liver metastases from colorectal adenocarcinomas grow in three patterns with different angiogenesis and desmoplasia. J Pathol 195(3):336–342

  6. 6.

    Allison KH, Fligner CL, Parks WT (2004) Radiographically occult, diffuse intrasinusoidal hepatic metastases from primary breast carcinomas: a clinicopathologic study of 3 autopsy cases. Arch Pathol Lab Med 128(12):1418–1423

  7. 7.

    Augustin HG, Koh GY (2017) Organotypic vasculature: from descriptive heterogeneity to functional pathophysiology. Science. https://doi.org/10.1126/science.aal2379

  8. 8.

    Lu J, Ye X, Fan F, Xia L, Bhattacharya R, Bellister S, Tozzi F, Sceusi E, Zhou Y, Tachibana I, Maru DM, Hawke DH, Rak J, Mani SA, Zweidler-McKay P, Ellis LM (2013) Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell 23:171–185. https://doi.org/10.1016/j.ccr.2012.12.021

  9. 9.

    Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284(5422):1994–1998

  10. 10.

    Küsters B, Leenders WP, Wesseling P, Smits D, Verrijp K, Ruiter DJ, Peters JP, van Der Kogel AJ, de Waal RM (2002) Vascular endothelial growth factor-A (165) induces progression of melanoma brain metastases without induction of sprouting angiogenesis. Cancer Res 62(2):341–345

  11. 11.

    Leenders WP, Küsters B, de Waal RM (2002) Vessel co-option: how tumors obtain blood supply in the absence of sprouting angiogenesis. Endothelium 9(2):83–87

  12. 12.

    Leenders WP, Küsters B, Verrijp K, Maass C, Wesseling P, Heerschap A, Ruiter D, Ryan A, de Waal R (2004) Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin Cancer Res 10(18 Pt 1):6222–6230

  13. 13.

    Berghoff AS, Rajky O, Winkler F, Bartsch R, Furtner J, Hainfellner JA, Goodman SL, Weller M, Schittenhelm J, Preusser M (2013) Invasion patterns in brain metastases of solid cancers. Neuro Oncol 15(12):1664–1672. https://doi.org/10.1093/neuonc/not112

  14. 14.

    Spanberger T, Berghoff AS, Dinhof C, Ilhan-Mutlu A, Magerle M, Hutterer M, Pichler J, Wöhrer A, Hackl M, Widhalm G, Hainfellner JA, Dieckmann K, Marosi C, Birner P, Prayer D, Preusser M (2013) Extent of peritumoral brain edema correlates with prognosis, tumoral growth pattern, HIF1a expression and angiogenic activity in patients with single brain metastases. Clin Exp Metastasis 30(4):357–368. https://doi.org/10.1007/s10585-012-9542-9

  15. 15.

    Rodewald AK, Rushing EJ, Kirschenbaum D, Mangana J, Mittmann C, Moch H, Lugassy C, Barnhill RL, Mihic-Probst D (2019) Eight autopsy cases of melanoma brain metastases showing angiotropism and pericytic mimicry. Implications for extravascular migratory metastasis. J Cutan Pathol. https://doi.org/10.1111/cup.13465

  16. 16.

    Bentolila LA, Prakash R, Mihic-Probst D, Wadehra M, Kleinman HK, Carmichael TS, Péault B, Barnhill RL, Lugassy C (2016) Imaging of angiotropism/vascular co-option in a murine model of brain melanoma: implications for melanoma progression along extravascular pathways. Sci Rep 6:23834. https://doi.org/10.1038/srep23834

  17. 17.

    Lugassy C, Péault B, Wadehra M, Kleinman HK, Barnhill RL (2013) Could pericytic mimicry represent another type of melanoma cell plasticity with embryonic properties? Pigment Cell Melanoma Res 26(5):746–754

  18. 18.

    Bugyik E, Szabó V, Dezső K, Rókusz A, Szücs A, Nagy P, Tóvári J, László V, Döme B, Paku S (2018) Role of (myo)fibroblasts in the development of vascular and connective tissue structure of the C38 colorectal cancer in mice. Cancer Commun (Lond) 38(1):46. https://doi.org/10.1186/s40880-018-0316-x

  19. 19.

    Téglási V, Csűry DT, Dezső K, Bugyik E, Szabó V, Szállási Z, Paku S, Reiniger L (2019) Origin and distribution of connective tissue and pericytes impacting vascularization in brain metastases with different growth patterns. J Neuropathol Exp Neurol 78(4):326–339. https://doi.org/10.1093/jnen/nlz007

  20. 20.

    Stessels F, Van den Eynden G, Van der Auwera I, Salgado R, Van den Heuvel E, Harris AL, Jackson DG, Colpaert CG, van Marck EA, Dirix LY, Vermeulen PB (2004) Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. Br J Cancer 90(7):1429–1436

  21. 21.

    Baker GJ, Yadav VN, Motsch S, Koschmann C, Calinescu AA, Mineharu Y, Camelo-Piragua SI, Orringer D, Bannykh S, Nichols WS, deCarvalho AC, Mikkelsen T, Castro MG, Lowenstein PR (2014) Mechanisms of glioma formation: iterative perivascular glioma growth and invasion leads to tumor progression, VEGF-independent vascularization, and resistance to antiangiogenic therapy. Neoplasia 16(7):543–561. https://doi.org/10.1016/j.neo.2014.06.003

  22. 22.

    Bugyik E, Dezso K, Reiniger L, László V, Tóvári J, Tímár J, Nagy P, Klepetko W, Döme B, Paku S (2011) Lack of angiogenesis in experimental brain metastases. J Neuropathol Exp Neurol 70(11):979–991. https://doi.org/10.1097/NEN.0b013e318233afd7

  23. 23.

    Carbonell WS, Ansorge O, Sibson N, Muschel R (2009) The vascular basement membrane as “soil” in brain metastasis. PLoS ONE 4(6):e5857. https://doi.org/10.1371/journal.pone.0005857

  24. 24.

    Valiente M, Obenauf AC, Jin X, Chen Q, Zhang XH, Lee DJ, Chaft JE, Kris MG, Huse JT, Brogi E, Massagué J (2014) Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156(5):1002–1016. https://doi.org/10.1016/j.cell.2014.01.040

  25. 25.

    Er EE, Valiente M, Ganesh K, Zou Y, Agrawal S, Hu J, Griscom B, Rosenblum M, Boire A, Brogi E, Giancotti FG, Schachner M, Malladi S, Massagué J (2018) Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat Cell Biol 20(8):966–978. https://doi.org/10.1038/s41556-018-0138-8

  26. 26.

    Stoletov K, Strnadel J, Zardouzian E, Momiyama M, Park FD, Kelber JA, Pizzo DP, Hoffman R, VandenBerg SR, Klemke RL (2013) Role of connexins in metastatic breast cancer and melanoma brain colonization. J Cell Sci 126:904–913

  27. 27.

    Wingrove E, Liu ZZ, Patel KD, Arnal-Estapé A, Cai WL, Melnick MA, Politi K, Monteiro C, Zhu L, Valiente M, Kluger HM, Chiang VL, Nguyen DX (2019) Transcriptomic hallmarks of tumor plasticity and stromal interactions in brain metastasis. Cell Rep 27(4):1277–1292. https://doi.org/10.1016/j.celrep.2019.03.085

  28. 28.

    Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol 31(17):2205–2218. https://doi.org/10.1200/JCO.2012.46.3653

  29. 29.

    Navis AC, Bourgonje A, Wesseling P, Wright A, Hendriks W, Verrijp K, van der Laak JA, Heerschap A, Leenders WP (2013) Effects of dual targeting of tumor cells and stroma in human glioblastoma xenografts with a tyrosine kinase inhibitor against c-MET and VEGFR2. PLoS ONE 8(3):58262. https://doi.org/10.1371/journal.pone.0058262

  30. 30.

    di Tomaso E, Snuderl M, Kamoun WS, Duda DG, Auluck PK, Fazlollahi L, Andronesi OC, Frosch MP, Wen PY, Plotkin SR, Hedley-Whyte ET, Sorensen AG, Batchelor TT, Jain RK (2011) Glioblastoma recurrence after Cediranib therapy in patients: lack of “rebound” revascularization as mode of escape. Cancer Res 71(1):19–28. https://doi.org/10.1158/0008-5472.CAN-10-2602

  31. 31.

    Caspani EM, Crossley PH, Redondo-Garcia C, Martinez S (2014) Glioblastoma: a pathogenic crosstalk between tumor cells and pericytes. PLoS ONE 9(7):e101402. https://doi.org/10.1371/journal.pone.0101402

  32. 32.

    van Dam PJ, Daelemans S, Ross E, Waumans Y, Van Laere S, Latacz E, Van Steen R, De Pooter C, Kockx M, Dirix L, Vermeulen PB (2018) Histopathological growth patterns as a candidate biomarker for immunomodulatory therapy. Semin Cancer Biol 52(Pt2):86–93. https://doi.org/10.1016/j.semcancer.2018.01.009

  33. 33.

    Passalidou E, Trivella M, Singh N, Ferguson M, Hu J, Cesario A, Granone P, Nicholson AG, Goldstraw P, Ratcliffe C, Tetlow M, Leigh I, Harris AL, Gatter KC, Pezzella F (2002) Vascular phenotype in angiogenic and non-angiogenic lung non-small cell carcinomas. Br J Cancer 86(2):244–249

  34. 34.

    Sardari Nia P, Colpaert C, Vermeulen P, Weyler J, Pezzella F, Van Schil P, Van Marck E (2008) Different growth patterns of non-small cell lung cancer represent distinct biologic subtypes. Ann Thorac Surg. https://doi.org/10.1016/j.athoracsur.2007.08.054

  35. 35.

    Sardari Nia P, Hendriks J, Friedel G, Van Schil P, Van Marck E (2007) Distinct angiogenic and non-angiogenic growth patterns of lung metastases from renal cell carcinoma. Histopathology 51(3):354–361

  36. 36.

    Guedj N, Couvelard A, Arcangeli G, Dubois S, Thabut G, Lesèche G, Fournier M, Degott C, Groussard O (2004) Angiogenesis and extracellular matrix remodelling in bronchioloalveolar carcinomas: distinctive patterns in mucinous and non-mucinous tumours. Histopathology 44:251–256

  37. 37.

    Bridgeman VL, Vermeulen PB, Foo S, Bilecz A, Daley F, Kostaras E, Nathan MR, Wan E, Frentzas S, Schweiger T, Hegedus B, Hoetzenecker K, Renyi-Vamos F, Kuczynski EA, Vasudev NS, Larkin J, Gore M, Dvorak HF, Paku S, Kerbel RS, Dome B, Reynolds AR (2017) Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J Pathol 241(3):362–374. https://doi.org/10.1002/path.4845

  38. 38.

    Pääkkö P, Risteli J, Risteli L, Autio-Harmainen H (1990) Immunohistochemical evidence that lung carcinomas grow on alveolar basement membranes. Am J Surg Pathol 14(5):464–473

  39. 39.

    Szabo V, Bugyik E, Dezso K, Ecker N, Nagy P, Timar J, Tovari J, Laszlo V, Bridgeman VL, Wan E, Frentzas S, Vermeulen PB, Reynolds AR, Dome B, Paku S (2015) Mechanism of tumour vascularization in experimental lung metastases. J Pathol 235(3):384–396. https://doi.org/10.1002/path.4464

  40. 40.

    Pastorino U, Andreola S, Tagliabue E, Pezzella F, Incarbone M, Sozzi G, Buyse M, Menard S, Pierotti M, Rilke F (1997) Immunocytochemical markers in stage I lung cancer: relevance to prognosis. J Clin Oncol 15(8):2858–2865

  41. 41.

    Sardari Nia P, Colpaert C, Blyweert B, Kui B, Vermeulen P, Ferguson M, Hendriks J, Weyler J, Pezzella F, Van Marck E, Van Schil P (2004) Prognostic value of nonangiogenic and angiogenic growth patterns in non-small-cell lung cancer. Br J Cancer 91(7):1293–1300

  42. 42.

    Wiesener MS, Münchenhagen PM, Berger I, Morgan NV, Roigas J, Schwiertz A, Jürgensen JS, Gruber G, Maxwell PH, Löning SA, Frei U, Maher ER, Gröne HJ, Eckardt KU (2001) Constitutive activation of hypoxia-inducible genes related to overexpression of hypoxia-inducible factor-1a in clear cell renal carcinomas. Cancer Res 61:5215–5222

  43. 43.

    Sardari Nia P, Hendriks J, Friedel G, Van Schil P, Van Marck E (2007) Distinct angiogenic and non-angiogenic growth patterns of lung metastases from renal cell carcinoma. Histopathology 51(3):354–361

  44. 44.

    Breast Cancer Progression Working Party (2000) Evidence for novel non-angiogenic pathway in breast-cancer metastasis. Breast Cancer Progression Working Party. Lancet 355(9217):1787–1788

  45. 45.

    Adighibe O, Micklem K, Campo L, Ferguson M, Harris A, Pozos R, Gatter K, Pezzella F (2006) Is nonangiogenesis a novel pathway for cancer progression? A study using 3-dimensional tumour reconstructions. Br J Cancer 94(8):1176–1179

  46. 46.

    Butz H, Ding Q, Nofech-Mozes R, Lichner Z, Ni H, Yousef GM (2017) Elucidating mechanisms of sunitinib resistance in renal cancer: an integrated pathological-molecular analysis. Oncotarget 9(4):4661–4674. https://doi.org/10.18632/oncotarget.23163

  47. 47.

    Missiaen R, Mazzone M, Bergers G (2018) The reciprocal function and regulation of tumor vessels and immune cells offers new therapeutic opportunities in cancer. Semin Cancer Biol 52(Pt 2):107–116. https://doi.org/10.1016/j.semcancer.2018.06.002

  48. 48.

    Adighibe O, Leek RD, Fernandez-Mercado M, Hu J, Snell C, Gatter KC, Harris AL, Pezzella F (2016) Why some tumours trigger neovascularisation and others don’t: the story thus far. Chin J Cancer 35:18. https://doi.org/10.1186/s40880-016-0082-6

  49. 49.

    Dezső K, Papp V, Bugyik E, Hegyesi H, Sáfrány G, Bödör C, Nagy P, Paku S (2012) Structural analysis of oval-cell-mediated liver regeneration in rats. Hepatology 56(4):1457–1467. https://doi.org/10.1002/hep.25713

  50. 50.

    Hoehme S, Brulport M, Bauer A, Bedawy E, Schormann W, Hermes M, Puppe V, Gebhardt R, Zellmer S, Schwarz M, Bockamp E, Timmel T, Hengstler JG, Drasdo D (2010) Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proc Natl Acad Sci USA 107:10371–10376. https://doi.org/10.1073/pnas.0909374107

  51. 51.

    Warren A, Le Couteur DG, Fraser R, Bowen DG, McCaughan GW, Bertolino P (2006) T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells. Hepatology 44:1182–1190

  52. 52.

    Horst AK, Neumann K, Diehl L, Tiegs G (2016) Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell Mol Immunol 13(3):277–292. https://doi.org/10.1038/cmi.2015.112

  53. 53.

    Matsumoto K, Yoshitomi H, Rossant J, Zaret KS (2001) Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294:559–563

  54. 54.

    van Dam PJ, van der Stok EP, Teuwen LA, Van den Eynden GG, Illemann M, Frentzas S, Majeed AW, Eefsen RL, Coebergh van den Braak RRJ, Lazaris A, Fernandez MC, Galjart B, Laerum OD, Rayes R, Grünhagen DJ, Van de Paer M, Sucaet Y, Mudhar HS, Schvimer M, Nyström H, Kockx M, Bird NC, Vidal-Vanaclocha F, Metrakos P, Simoneau E, Verhoef C, Dirix LY, Van Laere S, Gao ZH, Brodt P, Reynolds AR, Vermeulen PB (2017) International consensus guidelines for scoring the histopathological growth patterns of liver metastasis. Br J Cancer 117(10):1427–1441. https://doi.org/10.1038/bjc.2017.334

  55. 55.

    Nakashima O, Sugihara S, Kage M, Kojiro M (1995) Pathomorphologic characteristics of small hepatocellular carcinoma: a special reference to small hepatocellular carcinoma with indistinct margins. Hepatology 22(1):101–105

  56. 56.

    Tabariès S, Dong Z, Annis MG, Omeroglu A, Pepin F, Ouellet V, Russo C, Hassanain M, Metrakos P, Diaz Z, Basik M, Bertos N, Park M, Guettier C, Adam R, Hallett M, Siegel PM (2011) Claudin-2 is selectively enriched in and promotes the formation of breast cancer liver metastases through engagement of integrin complexes. Oncogene 30(11):1318–1328. https://doi.org/10.1038/onc.2010.518

  57. 57.

    Tabariès S, Dupuy F, Dong Z, Monast A, Annis MG, Spicer J, Ferri LE, Omeroglu A, Basik M, Amir E, Clemons M, Siegel PM (2012) Claudin-2 promotes breast cancer liver metastasis by facilitating tumor cell interactions with hepatocytes. Mol Cell Biol 32(15):2979–2991. https://doi.org/10.1128/MCB.00299-12

  58. 58.

    Lu WY, Bird TG, Boulter L, Tsuchiya A, Cole AM, Hay T, Guest RV, Wojtacha D, Man TY, Mackinnon A, Ridgway RA, Kendall T, Williams MJ, Jamieson T, Raven A, Hay DC, Iredale JP, Clarke AR, Sansom OJ, Forbes SJ (2015) Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat Cell Biol 17(8):971–983. https://doi.org/10.1038/ncb3203

  59. 59.

    Oertel M, Menthena A, Dabeva MD, Shafritz DA (2006) Cell competition leads to a high level of normal liver reconstitution by transplanted fetal liver stem/progenitor cells. Gastroenterology 130(2):507–520

  60. 60.

    Di Gregorio A, Bowling S, Rodriguez TA (2016) Cell competition and its role in the regulation of cell fitness from development to cancer. Dev Cell 38(6):621–634. https://doi.org/10.1016/j.devcel.2016.08.012

  61. 61.

    Madan E, Pelham CJ, Nagane M, Parker TM, Canas-Marques R, Fazio K, Shaik K, Yuan Y, Henriques V, Galzerano A, Yamashita T, Pinto MAF, Palma AM, Camacho D, Vieira A, Soldini D, Nakshatri H, Post SR, Rhiner C, Yamashita H, Accardi D, Hansen LA, Carvalho C, Beltran AL, Kuppusamy P, Gogna R, Moreno E (2019) Flower isoforms promote competitive growth in cancer. Nature 572(7768):260–264. https://doi.org/10.1038/s41586-019-1429-3

  62. 62.

    Lu J, Ye X, Fan F, Xia L, Bhattacharya R, Bellister S, Tozzi F, Sceusi E, Zhou Y, Tachibana I, Maru DM, Hawke DH, Rak J, Mani SA, Zweidler-McKay P, Ellis LM (2013) Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell 23(2):171–185. https://doi.org/10.1016/j.ccr.2012.12.021

  63. 63.

    Fernández Moro C, Bozóky B, Gerling M (2018) Growth patterns of colorectal cancer liver metastases and their impact on prognosis: a systematic review. BMJ Open Gastro 5:e000217. https://doi.org/10.1136/bmjgast-2018-000217

  64. 64.

    Galjart B, Nierop PMH, van der Stok EP, van den Braak RRJC, Höppener DJ, Daelemans S, Dirix LY, Verhoef C, Vermeulen PB, Grünhagen DJ (2019) Angiogenic desmoplastic histopathological growth pattern as a prognostic marker of good outcome in patients with colorectal liver metastases. Angiogenesis 22(2):355–368. https://doi.org/10.1007/s10456-019-09661-5

  65. 65.

    Frentzas S, Simoneau E, Bridgeman VL, Vermeulen PB, Foo S, Kostaras E, Nathan M, Wotherspoon A, Gao ZH, Shi Y, Van den Eynden G, Daley F, Peckitt C, Tan X, Salman A, Lazaris A, Gazinska P, Berg TJ, Eltahir Z, Ritsma L, Van Rheenen J, Khashper A, Brown G, Nystrom H, Sund M, Van Laere S, Loyer E, Dirix L, Cunningham D, Metrakos P, Reynolds AR (2016) Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat Med 22(11):1294–1302. https://doi.org/10.1038/nm.4197

  66. 66.

    Höppener DJ, Nierop PMH, Herpel E, Rahbari NN, Doukas M, Vermeulen PB, Grünhagen DJ, Verhoef C (2019) Histopathological growth patterns of colorectal liver metastasis exhibit little heterogeneity and can be determined with a high diagnostic accuracy. Clin Exp Metastasis 36(4):311–319. https://doi.org/10.1007/s10585-019-09975-0

  67. 67.

    Nierop PMH, Galjart B, Höppener DJ, van der Stok EP, Coebergh van den Braak RRJ, Vermeulen PB, Grünhagen DJ, Verhoef C (2019) Salvage treatment for recurrences after first resection of colorectal liver metastases: the impact of histopathological growth patterns. Clin Exp Metastasis 36(2):109–118. https://doi.org/10.1007/s10585-019-09960-7

  68. 68.

    Barnhill R, Vermeulen P, Daelemans S, van Dam PJ, Roman-Roman S, Servois V, Hurbain I, Gardrat S, Raposa G, Nicolas A, Dendale R, Pierron G, Desjardins L, Cassoux N, Piperno-Neumann S, Mariani P, Lugassy C (2018) Replacement and desmoplastic histopathological growth patterns: a pilot study of prediction of outcome in patients with uveal melanoma liver metastases. J Pathol Clin Res 4(4):227–240. https://doi.org/10.1002/cjp2.105

  69. 69.

    Terayama N, Terada T, Nakanuma Y (1996) Histologic growth patterns of metastatic carcinomas of the liver. Jpn J Clin Oncol 26(1):24–29

  70. 70.

    Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Viñals F, Inoue M, Bergers G, Hanahan D, Casanovas O (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231

  71. 71.

    Colpaert CG, Vermeulen PB, Van Beest P, Soubry A, Goovaerts G, Dirix LY, Harris AL, Van Marck EA (2003) Cutaneous breast cancer deposits show distinct growth patterns with different degrees of angiogenesis, hypoxia and fibrin deposition. Histopathology 42(6):530–540

  72. 72.

    Barnhill RL, Lugassy C (2004) Angiotropic malignant melanoma and extravascular migratory metastasis: description of 36 cases with emphasis on a new mechanism of tumour spread. Pathology 36(5):485–490

  73. 73.

    Jeong HS, Jones D, Liao S, Wattson DA, Cui CH, Duda DG, Willett CG, Jain RK, Padera TP (2015) Investigation of the lack of angiogenesis in the formation of lymph node metastases. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djv155

  74. 74.

    Vermeulen PB, Sardari Nia P, Colpaert C, Dirix LY, Van Marck E (2002) Lack of angiogenesis in lymph node metastases of carcinomas is growth pattern-dependent. Histopathology 40(1):105–107

  75. 75.

    Crivellato E, Nico B, Ribatti D (2007) Contribution of endothelial cells to organogenesis: a modern reappraisal of an old Aristotelian concept. J Anat 211(4):415–427

  76. 76.

    Li J, Stanger BZ (2019) The tumor as organizer model. Science 363(6431):1038–1039. https://doi.org/10.1126/science.aau9861

  77. 77.

    Barsky SH, Doberneck SA, Sternlicht MD, Grossman DA, Love SM (1997) ‘Revertant’ DCIS in human axillary breast carcinoma metastases. J Pathol 183(2):188–194

  78. 78.

    Enderling H, Hlatky L, Hahnfeldt P (2009) Migration rules: tumours are conglomerates of self-metastases. Br J Cancer 100(12):1917–1925. https://doi.org/10.1038/sj.bjc.6605071

Download references

Author information

Correspondence to Peter B. Vermeulen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Latacz, E., Caspani, E., Barnhill, R. et al. Pathological features of vessel co-option versus sprouting angiogenesis. Angiogenesis 23, 43–54 (2020). https://doi.org/10.1007/s10456-019-09690-0

Download citation

Keywords

  • Vessel co-option
  • Angiogenesis
  • Histopathological growth patterns
  • Metastasis
  • Tumour microenvironment
  • Angiotropism
  • Pericytic mimicry
  • Extravascular migratory metastasis