pp 1–11 | Cite as

A ribosomal DNA-hosted microRNA regulates zebrafish embryonic angiogenesis

  • Yunwei Shi
  • Xuchu Duan
  • Guangmin Xu
  • Xiaoning Wang
  • Guanyun Wei
  • Shikui Dong
  • Gangcai XieEmail author
  • Dong LiuEmail author
Brief Communication


MicroRNAs (miRNAs) are single-stranded small non-coding RNAs, generally 18–25 nucleotides in length, that act as repressors of gene expression. miRNAs are encoded by independent genes or processed from a variety of different RNA species. So far, there is no evidence showing that the ribosomal DNA-hosted microRNA is implicated in vertebrate development. Currently, we found a highly expressed small RNA hosted in ribosomal DNA was predicted as a novel miRNA, named miR-ntu1, in zebrafish endothelial cells by deep sequencing analysis. The miRNA was validated by custom-designed Taqman PCR, Northern Blot, and in silico analysis. Furthermore, we demonstrated that miR-ntu1 played a crucial role in zebrafish angiogenesis via modulation of Notch signaling. Our findings provide a notable case that a miRNA hosted in ribosomal DNA is involved in vertebrate development.


MiRNA Ribosomal DNA Endothelial cells Zebrafish Angiogenesis 



This work was supported by the National Natural Science Foundation of China 81570447, 81870359; Natural Science Foundation from Jiangsu Province 17KJA180008, SWYY-048, and BK20180048.

Supplementary material

10456_2019_9663_MOESM1_ESM.pdf (103 kb)
Supplementary material 1 (PDF 102 KB)
10456_2019_9663_MOESM2_ESM.pdf (3.4 mb)
Supplementary material 2 (PDF 3462 KB)


  1. 1.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297CrossRefGoogle Scholar
  2. 2.
    Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355. CrossRefGoogle Scholar
  3. 3.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. CrossRefGoogle Scholar
  4. 4.
    He S, Su H, Liu C, Skogerbo G, He H, He D, Zhu X, Liu T, Zhao Y, Chen R (2008) MicroRNA-encoding long non-coding RNAs. BMC Genom 9:236. CrossRefGoogle Scholar
  5. 5.
    Saraiya AA, Wang CC (2008) snoRNA, a novel precursor of microRNA in Giardia lamblia. PLoS Pathog 4(11):e1000224. CrossRefGoogle Scholar
  6. 6.
    Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11(4):441–450. CrossRefGoogle Scholar
  7. 7.
    Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9(3):219–230. CrossRefGoogle Scholar
  8. 8.
    Hata A (2013) Functions of microRNAs in cardiovascular biology and disease. Annu Rev Physiol 75:69–93. CrossRefGoogle Scholar
  9. 9.
    Condorelli G, Latronico MV, Cavarretta E (2014) microRNAs in cardiovascular diseases: current knowledge and the road ahead. J Am Coll Cardiol 63(21):2177–2187. CrossRefGoogle Scholar
  10. 10.
    Liu D, Krueger J, Le Noble F (2011) The role of blood flow and microRNAs in blood vessel development. Int J Dev Biol 55(4–5):419–429. CrossRefGoogle Scholar
  11. 11.
    Small EM, Olson EN (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469(7330):336–342. CrossRefGoogle Scholar
  12. 12.
    Zentner GE, Saiakhova A, Manaenkov P, Adams MD, Scacheri PC (2011) Integrative genomic analysis of human ribosomal DNA. Nucleic Acids Res 39(12):4949–4960. CrossRefGoogle Scholar
  13. 13.
    Chak LL, Mohammed J, Lai EC, Tucker-Kellogg G, Okamura K (2015) A deeply conserved, noncanonical miRNA hosted by ribosomal DNA. RNA 21(3):375–384. CrossRefGoogle Scholar
  14. 14.
    Wang X, Ling CC, Li L, Qin Y, Qi J, Liu X, You B, Shi Y, Zhang J, Jiang Q, Xu H, Sun C, You Y, Chai R, Liu D (2016) MicroRNA-10a/10b represses a novel target gene mib1 to regulate angiogenesis. Cardiovasc Res 110(1):140–150. CrossRefGoogle Scholar
  15. 15.
    Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26(4):407–415. CrossRefGoogle Scholar
  16. 16.
    Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40(1):37–52. CrossRefGoogle Scholar
  17. 17.
    Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10(10):1507–1517. CrossRefGoogle Scholar
  18. 18.
    Phng LK, Gerhardt H (2009) Angiogenesis: a team effort coordinated by notch. Dev Cell 16(2):196–208. CrossRefGoogle Scholar
  19. 19.
    Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe ML, Kalen M, Gerhardt H, Betsholtz C (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129):776–780. CrossRefGoogle Scholar
  20. 20.
    Leslie JD, Ariza-McNaughton L, Bermange AL, McAdow R, Johnson SL, Lewis J (2007) Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development 134(5):839–844. CrossRefGoogle Scholar
  21. 21.
    Siekmann AF, Lawson ND (2007) Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445(7129):781–784. CrossRefGoogle Scholar
  22. 22.
    Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD, Wiegand SJ (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA 104(9):3219–3224. CrossRefGoogle Scholar
  23. 23.
    Hasan SS, Tsaryk R, Lange M, Wisniewski L, Moore JC, Lawson ND, Wojciechowska K, Schnittler H, Siekmann AF (2017) Endothelial Notch signalling limits angiogenesis via control of artery formation. Nat Cell Biol 19(8):928–940. CrossRefGoogle Scholar
  24. 24.
    Pitulescu ME, Schmidt I, Giaimo BD, Antoine T, Berkenfeld F, Ferrante F, Park H, Ehling M, Biljes D, Rocha SF, Langen UH, Stehling M, Nagasawa T, Ferrara N, Borggrefe T, Adams RH (2017) Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat Cell Biol 19(8):915–927. CrossRefGoogle Scholar
  25. 25.
    Itoh M, Kim CH, Palardy G, Oda T, Jiang YJ, Maust D, Yeo SY, Lorick K, Wright GJ, Ariza-McNaughton L, Weissman AM, Lewis J, Chandrasekharappa SC, Chitnis AB (2003) Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev Cell 4(1):67–82CrossRefGoogle Scholar
  26. 26.
    Lawson ND, Scheer N, Pham VN, Kim CH, Chitnis AB, Campos-Ortega JA, Weinstein BM (2001) Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128(19):3675–3683Google Scholar
  27. 27.
    Jensen LD, Cao Z, Nakamura M, Yang Y, Brautigam L, Andersson P, Zhang Y, Wahlberg E, Lanne T, Hosaka K, Cao Y (2012) Opposing effects of circadian clock genes bmal1 and period2 in regulation of VEGF-dependent angiogenesis in developing zebrafish. Cell Rep 2(2):231–241. CrossRefGoogle Scholar
  28. 28.
    Jiang Q, Lagos-Quintana M, Liu D, Shi Y, Helker C, Herzog W, le Noble F (2013) miR-30a regulates endothelial tip cell formation and arteriolar branching. Hypertension 62(3):592–598. CrossRefGoogle Scholar
  29. 29.
    Bridge G, Monteiro R, Henderson S, Emuss V, Lagos D, Georgopoulou D, Patient R, Boshoff C (2012) The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis. Blood 120(25):5063–5072. CrossRefGoogle Scholar
  30. 30.
    Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500. CrossRefGoogle Scholar
  31. 31.
    Hon LS, Zhang Z (2007) The roles of binding site arrangement and combinatorial targeting in microRNA repression of gene expression. Genome Biol 8(8):R166. CrossRefGoogle Scholar
  32. 32.
    Hassel D, Cheng P, White MP, Ivey KN, Kroll J, Augustin HG, Katus HA, Stainier DY, Srivastava D (2012) MicroRNA-10 regulates the angiogenic behavior of zebrafish and human endothelial cells by promoting vascular endothelial growth factor signaling. Circ Res 111(11):1421–1433. CrossRefGoogle Scholar
  33. 33.
    Wei H, Zhou B, Zhang F, Tu Y, Hu Y, Zhang B, Zhai Q (2013) Profiling and identification of small rDNA-derived RNAs and their potential biological functions. PLoS ONE 8(2):e56842. CrossRefGoogle Scholar
  34. 34.
    Yoshikawa M, Fujii YR (2016) Human ribosomal RNA-derived resident microRNAs as the transmitter of information upon the cytoplasmic cancer stress. Biomed Res Int 2016:7562085. CrossRefGoogle Scholar
  35. 35.
    Son DJ, Kumar S, Takabe W, Kim CW, Ni CW, Alberts-Grill N, Jang IH, Kim S, Kim W, Won Kang S, Baker AH, Woong Seo J, Ferrara KW, Jo H (2013) The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat Commun 4:3000. CrossRefGoogle Scholar
  36. 36.
    Li Y, Zeng A, Han XS, Li G, Li YQ, Shen B, Jing Q (2017) Small RNAome sequencing delineates the small RNA landscape of pluripotent adult stem cells in the planarian Schmidtea mediterranea. Genom Data 14:114–125. CrossRefGoogle Scholar
  37. 37.
    Huang Y, Wang X, Wang X, Xu M, Liu M, Liu D (2013) Nonmuscle myosin II-B (myh10) expression analysis during zebrafish embryonic development. Gene Expr Patterns 13(7):265–270. CrossRefGoogle Scholar
  38. 38.
    Xu M, Liu D, Dong Z, Wang X, Wang X, Liu Y, Baas PW, Liu M (2014) Kinesin-12 influences axonal growth during zebrafish neural development. Cytoskeleton 71(10):555–563. CrossRefGoogle Scholar
  39. 39.
    Krueger J, Liu D, Scholz K, Zimmer A, Shi Y, Klein C, Siekmann A, Schulte-Merker S, Cudmore M, Ahmed A, le Noble F (2011) Flt1 acts as a negative regulator of tip cell formation and branching morphogenesis in the zebrafish embryo. Development 138(10):2111–2120. CrossRefGoogle Scholar
  40. 40.
    Lv F, Zhu C, Yan X, Wang X, Liu D (2017) Generation of a mef2aa:EGFP transgenic zebrafish line that expresses EGFP in muscle cells. Fish Physiol Biochem 43(1):287–294. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNantong UniversityNantongChina
  2. 2.School of Life ScienceNantong UniversityNantongChina
  3. 3.Department of Sports MedicineShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina
  4. 4.Medical School, Institute of Reproductive MedicineNantong UniversityNantongChina

Personalised recommendations