, Volume 22, Issue 1, pp 67–74 | Cite as

Angiogenic capacity in pre-eclampsia and uncomplicated pregnancy estimated by assay of angiogenic proteins and an in vitro vasculogenesis/angiogenesis test

  • Anita VirtanenEmail author
  • Outi Huttala
  • Kati Tihtonen
  • Tarja Toimela
  • Tuula Heinonen
  • Jukka Uotila
Original Paper



The purpose of the study was to determine the angiogenic capacity of sera in early and late pregnancy and in umbilical blood serum after childbirth, and to define how angiogenic properties assessed in a functional in vitro test are related to individual angiogenic proteins in six women with pre-eclampsia and in six healthy pregnant controls.


Maternal first and third trimester serum samples, and umbilical blood samples after childbirth, were tested in an in vitro human adipose stromal cell—human umbilical vein endothelial cell (hASC-HUVEC) vasculogenesis/angiogenesis assay. The angiogenic properties of the samples were measured by quantifying tubule formation. Concentrations of total placental growth factor (PlGF), total vascular endothelial growth factor (VEGF), soluble fms-like tyrosine kinase 1 (sFlt-1) and soluble endoglin (sEng) were determined by immunoassay.


First-trimester maternal sera of both groups had a stimulatory effect on angiogenesis in vitro and levels of angiogenic proteins did not differ between the groups. Third-trimester maternal sera in the pre-eclampsia group had an inhibitory effect on tubule formation, while those from normal pregnancies remained stimulatory. Compared with the first trimester there was a significant change in the concentrations of angiogenic proteins toward an anti-angiogenic state in pre-eclampsia. Umbilical blood serum exhibited strong anti-angiogenic effects without a significant difference between groups.


Third-trimester serum of pre-eclamptic patients is anti-angiogenic. This phenomenon is not yet present in the first trimester. Umbilical blood serum shows inhibitory effects on angiogenesis after normal as well as pre-eclamptic pregnancy.


In vitro vasculogenesis/angiogenesis Angiogenic proteins Inhibition of angiogenesis Pre-eclampsia VEGF sFlt-1 PlGF sEng 


  1. 1.
    Maynard S, Karumanchi A (2011) Angiogenic factors and preeclampsia. Semin Nephrol 31:33–46CrossRefGoogle Scholar
  2. 2.
    McElrath T, Lim KH, Pare E, Rich-Edwards J, Pucci D, Troisi R, Parry S (2012) Longitudinal evaluation of predictive value for preeclampsia of circulating angiogenic factors through pregnancy. Am J Obstet Gynecol 207:407.e1–407.e7CrossRefGoogle Scholar
  3. 3.
    Rana S, Karumanchi SA, Lindheimer MD (2014) Angiogenic factors in diagnosis, management, and research in preeclampsia. Hypertension 63:198–202CrossRefGoogle Scholar
  4. 4.
    Levine R, Maynard S, Qian C, Lim K-H, England L, Yu KF, Schisterman EF, Thadhani R, Sachs B, Epstein F, Sibai B, Sukhatme V, Karumanchi S (2004) Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 350:672–683CrossRefGoogle Scholar
  5. 5.
    Schaarschmidt W, Rana S (2013) The course of angiogenic factors in early- vs. late-onset preeclampsia and HELLP syndrome. J Perinat Med 41:511–516CrossRefGoogle Scholar
  6. 6.
    Staff AC, Braekke K, Kittelsen N, Lyberg T, Holthe M (2005) Circulating concentrations of sFlt1 (soluble fms-like tyrosine kinase 1) in fetal and maternal serum during pre-eclampsia. Eur J Obstet Gynecol Reprod Biol 122:33–39CrossRefGoogle Scholar
  7. 7.
    Blanco MV, Vega HR, Giuliano R, Grana DR, Azzato F, Lerman J, Milei J (2011) Histomorphometry of umbilical cord blood vessels in preeclampsia. J Clin Hypertens 13:30–34CrossRefGoogle Scholar
  8. 8.
    Toimela T, Huttala O, Sabell E, Mannerström M, Sarkanen JR, Ylikomi T, Heinonen T (2017) Intra-laboratory validated human cell-based in vitro vasculogenesis/angiogenesis test with serum-free medium. Reprod Toxicol 70:116–125CrossRefGoogle Scholar
  9. 9.
    Sarkanen JR, Mannerström M, Vuorenpää H, Uotila J, Ylikomi T, Heinonen T (2011) Intra-laboratory pre-validation of a human cell based in vitro angiogenesis assay for testing angiogenesis modulators. Front Pharmacol 1:147CrossRefGoogle Scholar
  10. 10.
    Virtanen A, Toimela T, Tihtonen K, Sarkanen JR, Huttala O, Heinonen T, Uotila J (2016) Strong inhibitory effect of pre-eclampsia serum on angiogenesis detected in vitro by human cell-based angiogenesis tests. Pregnancy Hypertens 6:367–373CrossRefGoogle Scholar
  11. 11.
    Huttala O, Vuorenpaa H, Toimela T, Uotila J, Kuokkanen H, Ylikomi T, Sarkanen JR, Heinonen T (2015) Human vascular model with defined stimulation medium—a characterization study. ALTEX 32:125–136CrossRefGoogle Scholar
  12. 12.
    Brown MA, Lindheimer MD, de Swiet M, Van Assche A, Moutquin JM (2001) The classification and diagnosis of the hypertension disorders of pregnancy: statement from the International Society for the Study of Hypertension in Preganancy (ISSHP). Hypertens Pregnancy 20:IX–XIVCrossRefGoogle Scholar
  13. 13.
    Sibai B, Dekker G, Kupferminc M (2005) Pre-eclampsia. Lancet 365:785–799CrossRefGoogle Scholar
  14. 14.
    Turner J (2010) Diagnosis and management of pre-eclampsia: an update. Int J Womens Health 2:327–337CrossRefGoogle Scholar
  15. 15.
    Sankilampi U, Hannila M-L, Saari A, Gissler M, Dunkel L (2013) New population-based references for birth weight, length, and head circumference in singletons and twins from 23 to 43 gestation weeks. Ann Med 45:446–454CrossRefGoogle Scholar
  16. 16.
    Sarkanen JR, Vuorenpää H, Huttala O, Mannerström B, Kuokkanen H, Miettinen S, Heinonen T, Ylikomi T (2012) Adipose stromal cell tubule network model provides a versatile tool for vascular research and tissue engineering. Cells Tissues Organs 196:385–397CrossRefGoogle Scholar
  17. 17.
    Chaiworapongsa T, Chaemsaithong P, Yeo L, Romero R (2014) Pre-eclampsia part 1: current understanding of its pathophysiology. Nat Rev Nephrol 10:466–480CrossRefGoogle Scholar
  18. 18.
    Kaufmann P, Mayhew TM, Charnock-Jones DS (2004) Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy. Placenta 25:114–126CrossRefGoogle Scholar
  19. 19.
    Maynard S, Min J, Merchan J, Lim K, Li J, Mondal S, Libermann T, Morgan J, Sellke F, Stillman I, Epstein F, Sukhatme V, Karumanchi S (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 111:649–658CrossRefGoogle Scholar
  20. 20.
    Kleinrouweler CE, Wiegerinck MM, Ris-Stalpers C, Bossuyt PM, van der Post JA, von Dadelszen P, Mol BW, Pajkrt E, EBM CONNECT Collaboration (2012) Accuracy of circulating placental growth factor, vascular endothelial growth factor, soluble fms-like tyrosine kinase 1 and soluble endoglin in the prediction of pre-eclampsia: a systematic review and meta-analysis. BJOG 119:778–787CrossRefGoogle Scholar
  21. 21.
    Kusanovic J, Romero R, Chaiworapongsa T, Erez O, Mittal P, Vaisbuch E, Mazaki-Tovi S, Gotsch F, Edwin S, Gomez R, Yeo L, Conde-Agudelo A, Hassan S (2009) A prospective cohort study of the value of maternal plasma concentrations of angiogenic and anti-angiogenic factors in early pregnancy and midtrimester in the identification of patients destined to develop preeclampsia. J Matern Fetal Neonatal Med 22:1021–1038CrossRefGoogle Scholar
  22. 22.
    Akolekar R, de Cruz J, Foidart JM, Munaut C, Nicolaides KH (2010) Maternal plasma soluble fms-like tyrosine kinase-1 and free vascular endothelial growth factor at 11 to 13 weeks of gestation in preeclampsia. Prenat Diagn 30:191–197CrossRefGoogle Scholar
  23. 23.
    Erez O, Romero R, Espinoza J, Fu W, Todem D, Kusanovic JP, Gotsch F, Edwin S, Nien JK, Chaiworapongsa T, Mittal P, Mazaki-Tovi S, Than NG, Gomez R, Hassan SS (2008) The change in concentrations of angiogenic and anti-angiogenic factors in maternal plasma between the first and second trimesters in risk assessment for the subsequent development of preeclampsia and small-for-gestational age. J Matern Fetal Neonatal Med 21:279–287CrossRefGoogle Scholar
  24. 24.
    Spurway J, Logan P, Pak S (2012) The development, structure and blood flow within the umbilical cord with particular reference to the venous system. Australas J Ultrasound Med 15:97–102CrossRefGoogle Scholar
  25. 25.
    Sezer SD, Küçük M, Yenisey C, Yüksel H, Odabaşı AR, Türkmen MK, Çetinkaya Çakmak B, Ömürlü IK (2012) Comparison of angiogenic and anti-angiogenic factors in maternal and umbilical cord blood in early- and late-onset pre-eclampsia. Gynecol Endocrinol 28:628–632CrossRefGoogle Scholar
  26. 26.
    Paredes V, Espinoza-Caicedo J, Salazar-Pousada D, Escobar G, Perez-Lopez F, Chedraui P (2017) Lower placental growth factor and higher free β-hCG and PAPP-A levels in the circulation of near-term pregnancies complicated with severe preeclampsia. J Gynecol Endocrinol 33:79–81CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Obstetrics and GynaecologyTampere University Central HospitalTampereFinland
  2. 2.FICAM, Finnish Centre for Alternative Methods, School of MedicineUniversity of TampereTampereFinland

Personalised recommendations