Advertisement

Angiogenesis

, Volume 22, Issue 1, pp 53–65 | Cite as

Inhibition of macrophage inflammatory protein-1β improves endothelial progenitor cell function and ischemia-induced angiogenesis in diabetes

  • Ting-Ting Chang
  • Liang-Yu Lin
  • Jaw-Wen ChenEmail author
Original Paper
  • 139 Downloads

Abstract

Systemic inflammation might contribute to the impairment of neovasculogenesis and endothelial progenitor cell (EPC) function in clinical diabetes mellitus (DM). Macrophage inflammatory protein-1β (MIP-1β) is an inflammatory chemokine that may be up-regulated in clinical DM. Its role in diabetic vasculopathy was not clarified. This study aimed to investigate the role of MIP-1β in human EPCs and in neovasculogenesis in different diabetic animal models with hindlimb ischemia. EPCs chamber assay and in vitro tube formation assay were used to estimate the degree of EPC migration and tube formation abilities. Leprdb/JNarl mice, C57BL/6 mice fed a high-fat diet, and streptozotocin-induced diabetic mice were used as different diabetic animal models. Laser Doppler imaging and flow cytometry were used to evaluate the degree of neovasculogenesis and the circulating levels of EPCs, respectively. MIP-1β impaired human EPC function for angiogenesis in vitro. Plasma MIP-1β levels were up-regulated in type 2 DM patients. MIP-1β inhibition enhanced the function and the C-X-C chemokine receptor type 4 expression of EPCs from type 2 diabetic patients, and improved EPC homing for ischemia-induced neovasculogenesis in different types of diabetic animals. MIP-1β directly impaired human EPC function. Inhibition of MIP-1β improved in vitro EPC function, and enhanced in vivo EPC homing and ischemia-induced neovasculogenesis, suggesting the critical role of MIP-1β for vasculopathy in the presence of DM.

Keywords

Angiogenesis Diabetes mellitus Endothelial progenitor cell Inflammation Ischemia Macrophage inflammatory protein-1β 

Notes

Acknowledgements

This study was partially supported by research grants V105E18-004-MY3, V105C-117, and V104C-101 from the Taipei Veterans General Hospital, Taipei, Taiwan.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Domingueti CP, Dusse LM, Carvalho M, de Sousa LP, Gomes KB, Fernandes AP (2016) Diabetes mellitus: the linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diab Complicat 30(4):738–745.  https://doi.org/10.1016/j.jdiacomp.2015.12.018 CrossRefGoogle Scholar
  2. 2.
    Derosa G, Maffioli P (2016) A review about biomarkers for the investigation of vascular function and impairment in diabetes mellitus. Vasc Health Risk Manag 12:415–419.  https://doi.org/10.2147/vhrm.s64460 CrossRefGoogle Scholar
  3. 3.
    Deng F, Wang S, Zhang L (2016) Endothelial microparticles act as novel diagnostic and therapeutic biomarkers of diabetes and its complications: a literature review. Biomed Res Int 2016.  https://doi.org/10.1155/2016/9802026 Google Scholar
  4. 4.
    Chawla A, Chawla R, Jaggi S (2016) Microvasular and macrovascular complications in diabetes mellitus: distinct or continuum? Indian J Endocrinol Metab 20(4):546–551.  https://doi.org/10.4103/2230-8210.183480 CrossRefGoogle Scholar
  5. 5.
    Jude EB, Eleftheriadou I, Tentolouris N (2010) Peripheral arterial disease in diabetes—a review. Diab Med 27(1):4–14.  https://doi.org/10.1111/j.1464-5491.2009.02866.x CrossRefGoogle Scholar
  6. 6.
    Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967CrossRefGoogle Scholar
  7. 7.
    Huang PH, Chen YH, Tsai HY, Chen JS, Wu TC, Lin FY, Sata M, Chen JW, Lin SJ (2010) Intake of red wine increases the number and functional capacity of circulating endothelial progenitor cells by enhancing nitric oxide bioavailability. Arterioscler Thromb Vasc Biol 30(4):869–877.  https://doi.org/10.1161/atvbaha.109.200618 CrossRefGoogle Scholar
  8. 8.
    Chang T-T, Wu T-C, Huang P-H, Chen J-S, Lin L-Y, Lin S-J, Chen J-W (2016) Aliskiren directly improves endothelial progenitor cell function from type II diabetic patients. Eur J Clin Investig 46(6):544–554.  https://doi.org/10.1111/eci.12632 CrossRefGoogle Scholar
  9. 9.
    Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP, Gurtner GC (2002) Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106(22):2781–2786CrossRefGoogle Scholar
  10. 10.
    Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10(8):858–864.  https://doi.org/10.1038/nm1075 CrossRefGoogle Scholar
  11. 11.
    Gallagher KA, Liu ZJ, Xiao M, Chen H, Goldstein LJ, Buerk DG, Nedeau A, Thom SR, Velazquez OC (2007) Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. J Clin Investig 117(5):1249–1259.  https://doi.org/10.1172/jci29710 CrossRefGoogle Scholar
  12. 12.
    Ceradini DJ, Yao D, Grogan RH, Callaghan MJ, Edelstein D, Brownlee M, Gurtner GC (2008) Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J Biol Chem 283(16):10930–10938.  https://doi.org/10.1074/jbc.M707451200 CrossRefGoogle Scholar
  13. 13.
    Lodi PJ, Garrett DS, Kuszewski J, Tsang ML, Weatherbee JA, Leonard WJ, Gronenborn AM, Clore GM (1994) High-resolution solution structure of the beta chemokine hMIP-1 beta by multidimensional NMR. Science 263(5154):1762–1767CrossRefGoogle Scholar
  14. 14.
    Hanifi-Moghaddam P, Kappler S, Seissler J, Muller-Scholze S, Martin S, Roep BO, Strassburger K, Kolb H, Schloot NC (2006) Altered chemokine levels in individuals at risk of type 1 diabetes mellitus. Diab Med 23(2):156–163.  https://doi.org/10.1111/j.1464-5491.2005.01743.x CrossRefGoogle Scholar
  15. 15.
    Tatara Y, Ohishi M, Yamamoto K, Shiota A, Hayashi N, Iwamoto Y, Takeda M, Takagi T, Katsuya T, Ogihara T, Rakugi H (2009) Macrophage inflammatory protein-1beta induced cell adhesion with increased intracellular reactive oxygen species. J Mol Cell Cardiol 47(1):104–111.  https://doi.org/10.1016/j.yjmcc.2009.03.012 CrossRefGoogle Scholar
  16. 16.
    Mirabelli-Badenier M, Braunersreuther V, Viviani GL, Dallegri F, Quercioli A, Veneselli E, Mach F, Montecucco F (2011) CC and CXC chemokines are pivotal mediators of cerebral injury in ischaemic stroke. Thromb Haemost 105(3):409–420.  https://doi.org/10.1160/th10-10-0662 CrossRefGoogle Scholar
  17. 17.
    Reape TJ, Groot PH (1999) Chemokines and atherosclerosis. Atherosclerosis 147(2):213–225CrossRefGoogle Scholar
  18. 18.
    Montecucco F, Lenglet S, Gayet-Ageron A, Bertolotto M, Pelli G, Palombo D, Pane B, Spinella G, Steffens S, Raffaghello L, Pistoia V, Ottonello L, Pende A, Dallegri F, Mach F (2010) Systemic and intraplaque mediators of inflammation are increased in patients symptomatic for ischemic stroke. Stroke 41(7):1394–1404.  https://doi.org/10.1161/strokeaha.110.578369 CrossRefGoogle Scholar
  19. 19.
    Chen TC, Chien SJ, Kuo HC, Huang WS, Sheen JM, Lin TH, Yen CK, Sung ML, Chen CN (2011) High glucose-treated macrophages augment E-selectin expression in endothelial cells. J Biol Chem 286(29):25564–25573.  https://doi.org/10.1074/jbc.M111.230540 CrossRefGoogle Scholar
  20. 20.
    Honczarenko M, Le Y, Glodek AM, Majka M, Campbell JJ, Ratajczak MZ, Silberstein LE (2002) CCR5-binding chemokines modulate CXCL12 (SDF-1)-induced responses of progenitor B cells in human bone marrow through heterologous desensitization of the CXCR4 chemokine receptor. Blood 100(7):2321–2329.  https://doi.org/10.1182/blood-2002-01-0248 CrossRefGoogle Scholar
  21. 21.
    Chang TT, Chen JW (2016) Emerging role of chemokine CC motif ligand 4 related mechanisms in diabetes mellitus and cardiovascular disease: friends or foes? Cardiovasc Diabetol 15(1):117.  https://doi.org/10.1186/s12933-016-0439-9 CrossRefGoogle Scholar
  22. 22.
    Chang TT, Wu TC, Huang PH, Chen JS, Lin LY, Lin SJ, Chen JW (2016) Aliskiren directly improves endothelial progenitor cell function from type II diabetic patients. Eur J Clin Investig 46(6):544–554.  https://doi.org/10.1111/eci.12632 CrossRefGoogle Scholar
  23. 23.
    Chang TT, Wu TC, Huang PH, Lin CP, Chen JS, Lin LY, Lin SJ, Chen JW (2015) Direct renin inhibition with aliskiren improves ischemia-induced neovasculogenesis in diabetic animals via the SDF-1 related mechanism. PLoS ONE 10(8):e0136627.  https://doi.org/10.1371/journal.pone.0136627 CrossRefGoogle Scholar
  24. 24.
    Dobaczewski M, Xia Y, Bujak M, Gonzalez-Quesada C, Frangogiannis NG (2010) CCR5 signaling suppresses inflammation and reduces adverse remodeling of the infarcted heart, mediating recruitment of regulatory T cells. Am J Pathol 176(5):2177–2187.  https://doi.org/10.2353/ajpath.2010.090759 CrossRefGoogle Scholar
  25. 25.
    Dewald O, Ren G, Duerr GD, Zoerlein M, Klemm C, Gersch C, Tincey S, Michael LH, Entman ML, Frangogiannis NG (2004) Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. Am J Pathol 164(2):665–677.  https://doi.org/10.1016/s0002-9440(10)63154-9 CrossRefGoogle Scholar
  26. 26.
    Lu M, Kuroki M, Amano S, Tolentino M, Keough K, Kim I, Bucala R, Adamis AP (1998) Advanced glycation end products increase retinal vascular endothelial growth factor expression. J Clin Investig 101(6):1219–1224.  https://doi.org/10.1172/jci1277 CrossRefGoogle Scholar
  27. 27.
    Martin A, Komada MR, Sane DC (2003) Abnormal angiogenesis in diabetes mellitus. Med Res Rev 23(2):117–145.  https://doi.org/10.1002/med.10024 CrossRefGoogle Scholar
  28. 28.
    Ishikawa K, Yoshida S, Nakao S, Sassa Y, Asato R, Kohno R, Arima M, Kita T, Yoshida A, Ohuchida K, Ishibashi T (2012) Bone marrow-derived monocyte lineage cells recruited by MIP-1beta promote physiological revascularization in mouse model of oxygen-induced retinopathy. Lab Investig 92(1):91–101.  https://doi.org/10.1038/labinvest.2011.141 CrossRefGoogle Scholar
  29. 29.
    Almalki SG, Agrawal DK (2017) ERK signaling is required for VEGF-A/VEGFR2-induced differentiation of porcine adipose-derived mesenchymal stem cells into endothelial cells. Stem Cell Res Ther 8(1):113.  https://doi.org/10.1186/s13287-017-0568-4 CrossRefGoogle Scholar
  30. 30.
    Carter PH (2002) Chemokine receptor antagonism as an approach to anti-inflammatory therapy: ‘just right’ or plain wrong? Curr Opin Chem Biol 6(4):510–525CrossRefGoogle Scholar
  31. 31.
    Drechsler M, de Jong R, Rossaint J, Viola JR, Leoni G, Wang JM, Grommes J, Hinkel R, Kupatt C, Weber C, Doring Y, Zarbock A, Soehnlein O (2015) Annexin A1 counteracts chemokine-induced arterial myeloid cell recruitment. Circ Res 116(5):827–835.  https://doi.org/10.1161/circresaha.116.305825 CrossRefGoogle Scholar
  32. 32.
    Guan E, Wang J, Norcross MA (2004) Amino-terminal processing of MIP-1beta/CCL4 by CD26/dipeptidyl-peptidase IV. J Cell Biochem 92(1):53–64.  https://doi.org/10.1002/jcb.20041 CrossRefGoogle Scholar
  33. 33.
    Guan E, Wang J, Roderiquez G, Norcross MA (2002) Natural truncation of the chemokine MIP-1 beta/CCL4 affects receptor specificity but not anti-HIV-1 activity. J Biol Chem 277(35):32348–32352.  https://doi.org/10.1074/jbc.M203077200 CrossRefGoogle Scholar
  34. 34.
    Proost P, Menten P, Struyf S, Schutyser E, De Meester I, Van Damme J (2000) Cleavage by CD26/dipeptidyl peptidase IV converts the chemokine LD78beta into a most efficient monocyte attractant and CCR1 agonist. Blood 96(5):1674–1680Google Scholar
  35. 35.
    Menten P, Wuyts A, Van Damme J (2002) Macrophage inflammatory protein-1. Cytokine Growth Factor Rev 13(6):455–481CrossRefGoogle Scholar
  36. 36.
    Cameron MJ, Arreaza GA, Grattan M, Meagher C, Sharif S, Burdick MD, Strieter RM, Cook DN, Delovitch TL (2000) Differential expression of CC chemokines and the CCR5 receptor in the pancreas is associated with progression to type I diabetes. J Immunol 165(2):1102–1110CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute of PharmacologyNational Yang-Ming UniversityTaipeiTaiwan, ROC
  2. 2.Department of MedicineTaipei Veterans General HospitalTaipeiTaiwan, ROC
  3. 3.Division of Clinical Research, Department of Medical ResearchTaipei Veterans General HospitalTaipeiTaiwan, ROC
  4. 4.Cardiovascular Research CenterNational Yang-Ming UniversityTaipeiTaiwan, ROC

Personalised recommendations