Cellular self-assembly into 3D microtissues enhances the angiogenic activity and functional neovascularization capacity of human cardiopoietic stem cells
Abstract
While cell therapy has been proposed as next-generation therapy to treat the diseased heart, current strategies display only limited clinical efficacy. Besides the ongoing quest for the ideal cell type, in particular the very low retention rate of single-cell (SC) suspensions after delivery remains a major problem. To improve cellular retention, cellular self-assembly into 3D microtissues (MTs) prior to transplantation has emerged as an encouraging alternative. Importantly, 3D-MTs have also been reported to enhance the angiogenic activity and neovascularization potential of stem cells. Therefore, here using the chorioallantoic membrane (CAM) assay we comprehensively evaluate the impact of cell format (SCs versus 3D-MTs) on the angiogenic potential of human cardiopoietic stem cells, a promising second-generation cell type for cardiac repair. Biodegradable collagen scaffolds were seeded with human cardiopoietic stem cells, either as SCs or as 3D-MTs generated by using a modified hanging drop method. Thereafter, seeded scaffolds were placed on the CAM of living chicken embryos and analyzed for their perfusion capacity in vivo using magnetic resonance imaging assessment which was then linked to a longitudinal histomorphometric ex vivo analysis comprising blood vessel density and characteristics such as shape and size. Cellular self-assembly into 3D-MTs led to a significant increase of vessel density mainly driven by a higher number of neo-capillary formation. In contrast, SC-seeded scaffolds displayed a higher frequency of larger neo-vessels resulting in an overall 1.76-fold higher total vessel area (TVA). Importantly, despite that larger TVA in SC-seeded group, the mean perfusion capacity (MPC) was comparable between groups, therefore suggesting functional superiority together with an enhanced perfusion efficacy of the neo-vessels in 3D-MT-seeded scaffolds. This was further underlined by a 1.64-fold higher perfusion ratio when relating MPC to TVA. Our study shows that cellular self-assembly of human cardiopoietic stem cells into 3D-MTs substantially enhances their overall angiogenic potential and their functional neovascularization capacity. Hence, the concept of 3D-MTs may be considered to increase the therapeutic efficacy of future cell therapy concepts.
Keywords
Cardiopoietic stem cells Angiogenesis Neovascularization Perfusion capacity Chorioallantoic membrane (CAM) assay Microtissues Three dimensionalAbbreviations
- 2D
Two-dimensional
- 3D
Three-dimensional
- 3D-MT
Three-dimensional microtissue
- AMI
Acute myocardial infarction
- AR
Aspect ratio
- BM
Bone marrow
- CAM
Chorioallantoic membrane
- CHF
Chronic heart failure
- ECM
Extracellular matrix
- H&E
Haematoxylin and eosin
- hPL
Human platelet lysate
- ID
Incubation day
- LV
Left ventricular
- MPC
Mean perfusion capacity
- MRI
Magnetic resonance imaging
- MSCs
Mesenchymal stem cells
- ROIs
Regions of interest
- SC
Single cell
- SD
Standard deviations
- SEM
Scanning electron microscope
- VEGF
Vascular endothelial growth factor
- TVA
Total vessel area
Notes
Acknowledgements
We thank Carol De Simio for her excellent graphical support (University Hospital Zurich, Switzerland). We additionally thank André Fitsche, Christiane Mittmann, Ursula Süss, and Pia Fuchs for great support on histological processing (Institute of Pathology and Department of Surgical Research, University Hospital Zurich, Switzerland). Fatma Kivrak Pfiffner is acknowledged for technical assistance with the handling of the eggs (Clinic for Plastic Surgery and Hand Surgery, University Hospital Zurich, Switzerland). We kindly thank Peter De Weale, Aymeric Seron, Dorothee Daro, and Sebastien Mauen (Celyad, Belgium) for generation of the GMP-grade human cardiopoietic stem cells.
Author contributions
PW, JB, and MYE designed experiments; PW, AB, AW, and JB performed experiments; PW, AB, JB, and MYE analyzed all data; YT injected contrast agent for MRI measurements; OE performed SEM; MH evaluated all histological sections; PW, AB, JB, and MYE wrote manuscript; PW, AB, AW, MH, PG, MC, SPH, JB, and MYE edited and discussed manuscript.
Funding
This work was supported by the Hartmann Müller-Foundation and the Swiss Heart Foundation.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no competing interests.
References
- 1.Nelson TJ, Behfar A, Terzic A (2008) Strategies for therapeutic repair: the “R(3)” regenerative medicine paradigm. Clin Transl Sci 1:168–171CrossRefGoogle Scholar
- 2.Terzic A, Pfenning MA, Gores GJ, Harper CM Jr (2015) Regenerative medicine build-out. Stem Cells Transl Med 4:1373–1379CrossRefGoogle Scholar
- 3.Tsukamoto A, Abbot SE, Kadyk LC, DeWitt ND, Schaffer DV, Wertheim JA, Whittlesey KJ, Werner MJ (2016) Challenging regeneration to transform medicine. Stem Cells Transl Med 5:1–7CrossRefGoogle Scholar
- 4.Segers VF, Lee RT (2008) Stem-cell therapy for cardiac disease. Nature 451:937–942CrossRefGoogle Scholar
- 5.Cambria E, Pasqualini FS, Wolint P, Gunter J, Steiger J, Bopp A, Hoerstrup SP, Emmert MY (2017) Translational cardiac stem cell therapy: advancing from first-generation to next-generation cell types. NPJ Regen Med 2:17CrossRefGoogle Scholar
- 6.Behfar A, Terzic A (2014) Stem cell in the rough: repair quotient mined out of a bone marrow niche. Circ Res 115:814–816CrossRefGoogle Scholar
- 7.Gyongyosi M, Wojakowski W, Lemarchand P, Lunde K, Tendera M, Bartunek J, Marban E, Assmus B, Henry TD, Traverse JH, Moye LA, Surder D, Corti R, Huikuri H, Miettinen J, Wohrle J, Obradovic S, Roncalli J, Malliaras K, Pokushalov E, Romanov A, Kastrup J, Bergmann MW, Atsma DE, Diederichsen A, Edes I, Benedek I, Benedek T, Pejkov H, Nyolczas N, Pavo N, Bergler-Klein J, Pavo IJ, Sylven C, Berti S, Navarese EP, Maurer G, Investigators A (2015) Meta-Analysis of Cell-based CaRdiac stUdiEs (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circ Res 116:1346–1360CrossRefGoogle Scholar
- 8.Marban E, Malliaras K (2012) Mixed results for bone marrow-derived cell therapy for ischemic heart disease. JAMA 308:2405–2406CrossRefGoogle Scholar
- 9.Behfar A, Faustino RS, Arrell DK, Dzeja PP, Perez-Terzic C, Terzic A (2008) Guided stem cell cardiopoiesis: discovery and translation. J Mol Cell Cardiol 45:523–529CrossRefGoogle Scholar
- 10.Marban E, Malliaras K (2010) Boot camp for mesenchymal stem cells. J Am Coll Cardiol 56:735–737CrossRefGoogle Scholar
- 11.Behfar A, Yamada S, Crespo-Diaz R, Nesbitt JJ, Rowe LA, Perez-Terzic C, Gaussin V, Homsy C, Bartunek J, Terzic A (2010) Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. J Am Coll Cardiol 56:721–734CrossRefGoogle Scholar
- 12.Bartunek J, Behfar A, Dolatabadi D, Vanderheyden M, Ostojic M, Dens J, El Nakadi B, Banovic M, Beleslin B, Vrolix M, Legrand V, Vrints C, Vanoverschelde JL, Crespo-Diaz R, Homsy C, Tendera M, Waldman S, Wijns W, Terzic A (2013) Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics. J Am Coll Cardiol 61:2329–2338CrossRefGoogle Scholar
- 13.Bartunek J, Davison B, Sherman W, Povsic T, Henry TD, Gersh B, Metra M, Filippatos G, Hajjar R, Behfar A, Homsy C, Cotter G, Wijns W, Tendera M, Terzic A (2016) Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial design. Eur J Heart Fail 18:160–168CrossRefGoogle Scholar
- 14.Bartunek J, Terzic A, Davison BA, Filippatos GS, Radovanovic S, Beleslin B, Merkely B, Musialek P, Wojakowski W, Andreka P, Horvath IG, Katz A, Dolatabadi D, El Nakadi B, Arandjelovic A, Edes I, Seferovic PM, Obradovic S, Vanderheyden M, Jagic N, Petrov I, Atar S, Halabi M, Gelev VL, Shochat MK, Kasprzak JD, Sanz-Ruiz R, Heyndrickx GR, Nyolczas N, Legrand V, Guedes A, Heyse A, Moccetti T, Fernandez-Aviles F, Jimenez-Quevedo P, Bayes-Genis A, Hernandez-Garcia JM, Ribichini F, Gruchala M, Waldman SA, Teerlink JR, Gersh BJ, Povsic TJ, Henry TD, Metra M, Hajjar RJ, Tendera M, Behfar A, Alexandre B, Seron A, Stough WG, Sherman W, Cotter G, Wijns W, CHART Program (2017) Cardiopoietic cell therapy for advanced ischaemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial. Eur Heart J 38:648–660CrossRefGoogle Scholar
- 15.Emmert MY, Wolint P, Jakab A, Sheehy SP, Pasqualini FS, Nguyen TD, Hilbe M, Seifert B, Weber B, Brokopp CE, Macejovska D, Caliskan E, von Eckardstein A, Schwartlander R, Vogel V, Falk V, Parker KK, Gyongyosi M, Hoerstrup SP (2017) Safety and efficacy of cardiopoietic stem cells in the treatment of post-infarction left-ventricular dysfunction—from cardioprotection to functional repair in a translational pig infarction model. Biomaterials 122:48–62CrossRefGoogle Scholar
- 16.Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23:845–856CrossRefGoogle Scholar
- 17.Alrefai MT, Murali D, Paul A, Ridwan KM, Connell JM, Shum-Tim D (2015) Cardiac tissue engineering and regeneration using cell-based therapy. Stem Cells Cloning 8:81–101Google Scholar
- 18.Radisic M, Christman KL (2013) Materials science and tissue engineering: repairing the heart. Mayo Clin Proc 88:884–898CrossRefGoogle Scholar
- 19.Haraguchi Y, Shimizu T, Yamato M, Okano T (2012) Concise review: cell therapy and tissue engineering for cardiovascular disease. Stem Cells Transl Med 1:136–141CrossRefGoogle Scholar
- 20.Gunter J, Wolint P, Bopp A, Steiger J, Cambria E, Hoerstrup SP, Emmert MY (2016) Microtissues in cardiovascular medicine: regenerative potential based on a 3D microenvironment. Stem Cells Int 9098523Google Scholar
- 21.Alajati A, Laib AM, Weber H, Boos AM, Bartol A, Ikenberg K, Korff T, Zentgraf H, Obodozie C, Graeser R, Christian S, Finkenzeller G, Stark GB, Heroult M, Augustin HG (2008) Spheroid-based engineering of a human vasculature in mice. Nat Methods 5:439–445CrossRefGoogle Scholar
- 22.Bhang SH, Lee S, Shin JY, Lee TJ, Kim BS (2012) Transplantation of cord blood mesenchymal stem cells as spheroids enhances vascularization. Tissue Eng A 18:2138–2147CrossRefGoogle Scholar
- 23.Lee GH, Lee JS, Wang X, Lee SH (2016) Bottom-up engineering of well-defined 3D microtissues using microplatforms and biomedical applications. Adv Healthc Mater 5:56–74CrossRefGoogle Scholar
- 24.Metzger W, Sossong D, Bachle A, Putz N, Wennemuth G, Pohlemann T, Oberringer M (2011) The liquid overlay technique is the key to formation of co-culture spheroids consisting of primary osteoblasts, fibroblasts and endothelial cells. Cytotherapy 13:1000–1012CrossRefGoogle Scholar
- 25.Emmert MY, Wolint P, Wickboldt N, Gemayel G, Weber B, Brokopp CE, Boni A, Falk V, Bosman A, Jaconi ME, Hoerstrup SP (2013) Human stem cell-based three-dimensional microtissues for advanced cardiac cell therapies. Biomaterials 34:6339–6354CrossRefGoogle Scholar
- 26.Emmert MY, Wolint P, Winklhofer S, Stolzmann P, Cesarovic N, Fleischmann T, Nguyen TD, Frauenfelder T, Boni R, Scherman J, Bettex D, Grunenfelder J, Schwartlander R, Vogel V, Gyongyosi M, Alkadhi H, Falk V, Hoerstrup SP (2013) Transcatheter based electromechanical mapping guided intramyocardial transplantation and in vivo tracking of human stem cell based three dimensional microtissues in the porcine heart. Biomaterials 34:2428–2441CrossRefGoogle Scholar
- 27.Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J (2013) Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31:108–115CrossRefGoogle Scholar
- 28.Cheng NC, Wang S, Young TH (2012) The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials 33:1748–1758CrossRefGoogle Scholar
- 29.Emmert MY, Hitchcock RW, Hoerstrup SP (2014) Cell therapy, 3D culture systems and tissue engineering for cardiac regeneration. Adv Drug Deliv Rev 69–70:254–269CrossRefGoogle Scholar
- 30.Kim JH, Park IS, Park Y, Jung Y, Kim SH, Kim SH (2013) Therapeutic angiogenesis of three-dimensionally cultured adipose-derived stem cells in rat infarcted hearts. Cytotherapy 15:542–556CrossRefGoogle Scholar
- 31.Lee WY, Wei HJ, Lin WW, Yeh YC, Hwang SM, Wang JJ, Tsai MS, Chang Y, Sung HW (2011) Enhancement of cell retention and functional benefits in myocardial infarction using human amniotic-fluid stem-cell bodies enriched with endogenous ECM. Biomaterials 32:5558–5567CrossRefGoogle Scholar
- 32.Kapur SK, Wang X, Shang H, Yun S, Li X, Feng G, Khurgel M, Katz AJ (2012) Human adipose stem cells maintain proliferative, synthetic and multipotential properties when suspension cultured as self-assembling spheroids. Biofabrication 4:025004CrossRefGoogle Scholar
- 33.Kelm JM, Ehler E, Nielsen LK, Schlatter S, Perriard JC, Fussenegger M (2004) Design of artificial myocardial microtissues. Tissue Eng 10:201–214CrossRefGoogle Scholar
- 34.Oltolina F, Zamperone A, Colangelo D, Gregoletto L, Reano S, Pietronave S, Merlin S, Talmon M, Novelli E, Diena M, Nicoletti C, Musaro A, Filigheddu N, Follenzi A, Prat M (2015) Human cardiac progenitor spheroids exhibit enhanced engraftment potential. PLoS ONE 10:e0137999CrossRefGoogle Scholar
- 35.Tseliou E, Pollan S, Malliaras K, Terrovitis J, Sun B, Galang G, Marban L, Luthringer D, Marban E (2013) Allogeneic cardiospheres safely boost cardiac function and attenuate adverse remodeling after myocardial infarction in immunologically mismatched rat strains. J Am Coll Cardiol 61:1108–1119CrossRefGoogle Scholar
- 36.Murphy KC, Fang SY, Leach JK (2014) Human mesenchymal stem cell spheroids in fibrin hydrogels exhibit improved cell survival and potential for bone healing. Cell Tissue Res 357:91–99CrossRefGoogle Scholar
- 37.Adair TH, Montani JP (2010) Angiogenesis assays. In: Sciences MCL (ed) Angiogenesis. Morgan & Claypool Publishers, San RafaelGoogle Scholar
- 38.Goodwin AM (2007) In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents. Microvasc Res 74:172–183CrossRefGoogle Scholar
- 39.Ribatti D (2008) Chick embryo chorioallantoic membrane as a useful tool to study angiogenesis. Int Rev Cell Mol Bio 270:181–224CrossRefGoogle Scholar
- 40.Ribatti D, Vacca A, Roncali L, Dammacco F (1996) The chick embryo chorioallantoic membrane as a model for in vivo research on angiogenesis. Int J Dev Biol 40:1189–1197Google Scholar
- 41.Gokce G, Ozgurtas T, Sobaci G, Kucukevcilioglu M (2016) The effects of amphotericin B on angiogenesis in chick chorioallantoic membrane. Cutan Ocul Toxicol 35:92–96Google Scholar
- 42.Woloszyk A, Buschmann J, Waschkies C, Stadlinger B, Mitsiadis TA (2016) Human dental pulp stem cells and gingival fibroblasts seeded into silk fibroin scaffolds have the same ability in attracting vessels. Front Physiol 7:140Google Scholar
- 43.Borges J, Tegtmeier FT, Padron NT, Mueller MC, Lang EM, Stark GB (2003) Chorioallantoic membrane angiogenesis model for tissue engineering: a new twist on a classic model. Tissue Eng 9:441–450CrossRefGoogle Scholar
- 44.Staton CA, Reed MW, Brown NJ (2009) A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol 90:195–221CrossRefGoogle Scholar
- 45.Kivrak Pfiffner F, Waschkies C, Tian Y, Woloszyk A, Calcagni M, Giovanoli P, Rudin M, Buschmann J (2015) A new in vivo magnetic resonance imaging method to noninvasively monitor and quantify the perfusion capacity of three-dimensional biomaterials grown on the chorioallantoic membrane of chick embryos. Tissue Eng C 21:339–346CrossRefGoogle Scholar
- 46.Zuo Z, Syrovets T, Genze F, Abaei A, Ma G, Simmet T, Rasche V (2015) High-resolution MRI analysis of breast cancer xenograft on the chick chorioallantoic membrane. NMR Biomed 28:440–447CrossRefGoogle Scholar
- 47.GmbH M (2017) Optimaix scaffolds for cell culture researchGoogle Scholar
- 48.Waschkies C, Nicholls F, Buschmann J (2015) Comparison of medetomidine, thiopental and ketamine/midazolam anesthesia in chick embryos for in ovo Magnetic Resonance Imaging free of motion artifacts. Sci Rep 5:15536CrossRefGoogle Scholar
- 49.Kelm JM, Timmins NE, Brown CJ, Fussenegger M, Nielsen LK (2003) Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng 83:173–180CrossRefGoogle Scholar
- 50.Kastellorizios M, Papadimitrakopoulos F, Burgess DJ (2015) Multiple tissue response modifiers to promote angiogenesis and prevent the foreign body reaction around subcutaneous implants. J Controlled Release 214:103–111CrossRefGoogle Scholar
- 51.Dondossola E, Holzapfel BM, Alexander S, Filippini S, Hutmacher DW, Friedl P (2016) Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nat Biomed Eng 1Google Scholar
- 52.Logsdon EA, Finley SD, Popel AS, Mac Gabhann F (2014) A systems biology view of blood vessel growth and remodelling. J Cell Mol Med 18:1491–1508CrossRefGoogle Scholar
- 53.Silvestre JS, Levy BI, Tedgui A (2008) Mechanisms of angiogenesis and remodelling of the microvasculature. Cardiovasc Res 78:201–202CrossRefGoogle Scholar
- 54.Cambria E, Steiger J, Gunter J, Bopp A, Wolint P, Hoerstrup SP, Emmert MY (2016) Cardiac regenerative medicine: the potential of a new generation of stem cells. Transfus Med Hemother 43:275–281CrossRefGoogle Scholar
- 55.Teerlink JR, Metra M, Filippatos GS, Davison BA, Bartunek J, Terzic A, Gersh BJ, Povsic TJ, Henry TD, Alexandre B, Homsy C, Edwards C, Seron A, Wijns W, Cotter G, Investigators C (2017) Benefit of cardiopoietic mesenchymal stem cell therapy on left ventricular remodelling: results from the Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) study. Eur J Heart Fail 19:1520–1529CrossRefGoogle Scholar
- 56.Cochain C, Channon KM, Silvestre JS (2013) Angiogenesis in the infarcted myocardium. Antioxid Redox Signal 18:1100–1113CrossRefGoogle Scholar
- 57.Vilahur G, Onate B, Cubedo J, Bejar MT, Arderiu G, Pena E, Casani L, Gutierrez M, Capdevila A, Pons-Llado G, Carreras F, Hidalgo A, Badimon L (2017) Allogenic adipose-derived stem cell therapy overcomes ischemia-induced microvessel rarefaction in the myocardium: systems biology study. Stem Cell Res Ther 8:52CrossRefGoogle Scholar
- 58.Ji ST, Kim H, Yun J, Chung JS, Kwon SM (2017) Promising therapeutic strategies for mesenchymal stem cell-based cardiovascular regeneration: from cell priming to tissue engineering. Stem Cells Int 2017:3945403Google Scholar
- 59.Spyridopoulos I, Arthur HM (2017) Microvessels of the heart: formation, regeneration, and dysfunction. Microcirculation. 24:e12338CrossRefGoogle Scholar
- 60.Zhang H, Zhu SJ, Wang W, Wei YJ, Hu SS (2008) Transplantation of microencapsulated genetically modified xenogeneic cells augments angiogenesis and improves heart function. Gene Ther 15:40–48CrossRefGoogle Scholar
- 61.Behfar A, Crespo-Diaz R, Terzic A, Gersh BJ (2014) Cell therapy for cardiac repair—lessons from clinical trials. Nat Rev Cardiol 11:232–246CrossRefGoogle Scholar
- 62.Behfar A, Terzic A (2006) Derivation of a cardiopoietic population from human mesenchymal stem cells yields cardiac progeny. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S78–S82CrossRefGoogle Scholar
- 63.Birchler A, Berger M, Jaggin V, Lopes T, Etzrodt M, Misun PM, Pena-Francesch M, Schroeder T, Hierlemann A, Frey O (2016) Seamless combination of fluorescence-activated cell sorting and hanging-drop networks for individual handling and culturing of stem cells and microtissue spheroids. Anal Chem 88:1222–1229CrossRefGoogle Scholar
- 64.Declercq HA, De Caluwe T, Krysko O, Bachert C, Cornelissen MJ (2013) Bone grafts engineered from human adipose-derived stem cells in dynamic 3D-environments. Biomaterials 34:1004–1017CrossRefGoogle Scholar
- 65.Dissanayaka WL, Zhu L, Hargreaves KM, Jin L, Zhang C (2014) Scaffold-free prevascularized microtissue spheroids for pulp regeneration. J Dent Res 93:1296–1303CrossRefGoogle Scholar
- 66.Laschke MW, Schank TE, Scheuer C, Kleer S, Schuler S, Metzger W, Eglin D, Alini M, Menger MD (2013) Three-dimensional spheroids of adipose-derived mesenchymal stem cells are potent initiators of blood vessel formation in porous polyurethane scaffolds. Acta Biomater 9:6876–6884CrossRefGoogle Scholar
- 67.Jakob W, Jentzsch KD, Mauersberger B, Heder G (1978) The chick embryo choriallantoic membrane as a bioassay for angiogenesis factors: reactions induced by carrier materials. Exp Pathol 15:241–249Google Scholar
- 68.Ribatti D (2010) The chick embryo chorioallantoic membrane in the study of angiogenesis and metastasis concluding remarks. Springer, Dordrecht, pp 87–88CrossRefGoogle Scholar
- 69.Spanelborowski K, Schnapper U, Heymer B (1988) The chick chorioallantoic membrane assay in the assessment of angiogenic factors. Biomed Res 9:253–260CrossRefGoogle Scholar